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e Invariants are formal documentation:

o Pre-/postconditions, class invariants
o Effect specifications
o Dependency specifications

e Formal semantics: amenable to formal methods, testing

Example:

ArrayStack.peek() requires preconditions:
storageArray != null
topOfStackIndex >= 0
topOfStackIndex < storageArray.length



Limitations of current invariant-based approaches

e Invariants sometimes hard to write
Partly addressed by invariant inference
(e.g., Daikon, DIDUCE, DySy, Heureka, ...)
e Can bury important information
E.g., some Daikon-inferred specifications for simple methods
have dozens of axioms
e Can involve redundancy

e Can be inconsistent with higher-level knowledge
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topOfStack < array.length topOfStack < array.length-1
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e Can involve redundancy
e Can be inconsistent with higher-level knowledge
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topOfStack < array.length topOfStack < array.length-1
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Second-Order Constraints

Our approach: constraints between sets of invariants

Examples:

o if we meet all preconditions of ‘peek’ we also meet all
preconditions of ‘pop’:
SUBDOMAIN(peek, pop)

e ‘pop’ is safe to call after ‘push’:
CaNFoLLow(push, pop)

@ ‘invert3x3Matrix’ works like ‘invertMatrix’, but may have
stronger preconditions:
CONCORD(invertMatrix, invert3x3Matrix)
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Applying second-order constraints to Daikon

e Hand-written documentation

e Two software tools:

O Hints for first-order invariant inference
® Automatically inferred higher-level documentation

2nd-order constraints

Program

Functionality

1st-order invariants




A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is



A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is
e SUBRANGE(intersect, clear)
‘clear’ ensures at least as many invariants as ‘intersect’



A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is
e SUBRANGE(intersect, clear)
‘clear’ ensures at least as many invariants as ‘intersect’

o CANFoOLLOW(connect, send)
‘connect’ provides the requirements for ‘send’ is



A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is
e SUBRANGE(intersect, clear)
‘clear’ ensures at least as many invariants as ‘intersect’
o CANFoOLLOW(connect, send)
‘connect’ provides the requirements for ‘send’ is
e FoLLows(push, pop)
Anyone calling ‘pop’ may call ‘push’ first



A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is
e SUBRANGE(intersect, clear)
‘clear’ ensures at least as many invariants as ‘intersect’
o CANFoOLLOW(connect, send)
‘connect’ provides the requirements for ‘send’ is
e FoLLows(push, pop)
Anyone calling ‘pop’ may call ‘push’ first
e CONCORD(computeGeneralFFT, computeCoprimeFFT)

‘computeCoprimeFFT' has behavioural subtype of
‘computeGeneralFFT’



A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is
e SUBRANGE(intersect, clear)
‘clear’ ensures at least as many invariants as ‘intersect’
o CANFoOLLOW(connect, send)
‘connect’ provides the requirements for ‘send’ is
e FoLLows(push, pop)
Anyone calling ‘pop’ may call ‘push’ first
e CONCORD(computeGeneralFFT, computeCoprimeFFT)

‘computeCoprimeFFT' has behavioural subtype of
‘computeGeneralFFT’

Other useful properties are conceivable
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Logical structure of our constraint catalogue

requires ensures
pre (A) post (A)

SUBDOMAIN SUBRANGE

CONCORD




Inference with Second-Order Constraints

0 Refined First-Order Inference

@ User provides hand-written
second-order constraints
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(® Second-Order Inference

o System infers second-order
constraints
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Refined First-Order Inference

ArrayStack s = new ArrayStack();
s.push("bar");
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assert s.peek() == "foo";
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assert s.peek() == "bar";
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Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar" | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 = assert s.peek() == "bar";

ArrayStack.peek() requires ArrayStack.pop() requires
array !=null array !=null
tos=1...7 tos =1



Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar" | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 = assert s.peek() == "bar";

ArrayStack.peek() requires ArrayStack.pop() requires
array !=null array !=null

oS T—————————"" tos=1

tos >=0



Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar" | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 =assert s.peek() == "bar";

( SUBDOMAIN(peek pop

ArrayStack.peek() requires ArrayStack.pop() requires
array !=null array !=null

oS T—————————"" tos=1

tos >=0




Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar" | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 assert s.peek() == "bar”;

SUBDOAI(peek, pop)
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Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar” | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 assert s.peek() == "bar”;

ArrayStack.peek() requires ArrayStack.pop() requires
ar = =
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tof . . .
+olinformation across Daikon




Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)
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Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

e Incorporate per-invariant Daikon Confidence metrics

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

DC peek() ensures DC pop() ensures
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.8 this has only one value .6 this has only one value

.5 return has only one value

post(peek) = return.class == String? ﬁ

9x.8(.7 )
1

confidence =



Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

e Incorporate per-invariant Daikon Confidence metrics

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

DC peek() ensures DC pop() ensures
.9 return.class == String .7 return.class == String
.8 this has only one value .6 this has only one value

.5 return has only one value

post(peek) = this has only one value? ﬁ

Ix.8(.7+6 )
1+1

confidence =



Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

e Incorporate per-invariant Daikon Confidence metrics

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

DC peek() ensures DC pop() ensures
.9 return.class == String .7 return.class == String
.8 this has only one value .6 this has only one value

.5 return has only one value

post(peek) = return has only one value? ﬁ

: _.9%.8(.74.640)
confidence = T
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Evaluation: Refined Invariant Inference (1)

StackAr: Daikon's stack-based array implementation

int topOfStack: top-of-stack location

int[] theArray: stack representation

pop(): remove top element

top(): peek at top element value

topAndPop(): remove top element and return it

SUBDOMAIN(POP, TOP)
SUBDOMAIN(TOP, TOPANDPOP)
SUBDOMAIN(TOPANDPOP, POP)

Removed 5 false invariants:

e this has only one value
theArray has only one value
theArray.length == 100
theArray[topOfStack] != null
topOfStack < theArray.length-1
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StackAr: Daikon's stack-based array implementation
@ int topOfStack: top-of-stack location
@ int[] theArray: stack representation
@ pop(): remove top element
@ top(): peek at top element value
@ topAndPop(): remove top element and return it

SUBDOMAIN(POP, TOP)
SUBDOMAIN(TOP, TOPANDPOP)
SUBDOMAIN(TOPANDPOP, POP)

o Removed 5 false invariants:
Added 2 new invariants:
o this.topOfStack >= -1
o DEFAULT_CAPACITY != theArray.length-1



Evaluation: Refined Invariant Inference (1)

StackAr: Daikon's stack-based array implementation
@ int topOfStack: top-of-stack location

int[] theArray: stack representation

pop(): remove top element

top(): peek at top element value

°
°
°
@ topAndPop(): remove top element and return it

SUBDOMAIN(POP, TOP)
SUBDOMAIN(TOP, TOPANDPOP)
SUBDOMAIN(TOPANDPOP, POP)

e Removed 5 false invariants:
o Added 2 new invariants:
o Refined 1 overly-specific invariants:

this.topOfStack < size(this.theArray[])-1

4

this.topOfStack <= size(this.theArray[])-1



Evaluation: Refined Invariant Inference (2)

2nd-order 1st-order
Constraints Invariants
Experiment Written | Added \ Removed \ Refined
StackAr #1 3 2 5 1
StackAr #2 3 3 4 0
Apache Commons 26 | 25 +1 35 5
Collections
AspectJ 26 | 12 +1 12 3

e Most changes positive
e Only two incorrect invariants introduced

o Both due to nonmonotonicity in the underlying first-order
invariant inference mechanism



Evaluation: Refined Invariant Inference (2)

2nd-order 1st-order
Constraints Invariants
Experiment Written | Added \ Removed \ Refined
StackAr #1 3 2 5 1
StackAr #2 3 3 4 0
Apache Commons 26 | 25 +1 35 5
Collections
AspectJ 26 | 12 +1 12 3

e Most changes positive
e Only two incorrect invariants introduced

o Both due to nonmonotonicity in the underlying first-order
invariant inference mechanism

Overwhelmingly positive effects
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(® Second-Order Inference

e Evaluated generated
second-order constraints

e For all hand-written
second-order constraints
e For random classes:

e 2 Apache Commons
Collections
o 2 AspectJ

o Confidence threshold: 0.75
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e 12 we had wrongly annotated

e 7 lacked any supporting data samples

e 6 we rejected due to ‘noise’ first-order invariants
e 2 were Concord

@ Finding new second-order constraints:
IMMUTABLE class suggests even hlgher—order invariants!
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Evaluation: Second-Order Inference

© Confirming our manual annotations:
Of our 64 original manual annotations:
o 37 we inferred
e 27 we did not infer, of which:

e 12 we had wrongly annotated

e 7 lacked any supporting data samples

e 6 we rejected due to ‘noise’ first-order invariants
e 2 were Concord

@ Finding new second-order constraints:
inferred incorrect
Apache Commons: AbstractMapBag 2 0

Incomplete unit tests = Poor Daikon invariants
W —T—

<Aspect) LstBuildConfigManager: 112 5 >




Conclusions

Second-order constraints:
o Permit high level of discourse about
program properties
o Refine the quality of detected
first-order invariants
o Can be detected automatically

o Are easy to use and powerful



