Second-Order Constraints in

Dynamic Invariant Inference

Kaituo Li (University of Massachusetts Amherst)
Christoph Reichenbach (Goethe University Frankfurt)
Yannis Smaragdakis (University of Athens)
Michal Young (University of Oregon)

21 August 2013

Invariants on Program Behaviour

e Invariants are formal documentation:

o Pre-/postconditions, class invariants
o Effect specifications
o Dependency specifications

e Formal semantics: amenable to formal methods, testing

Invariants on Program Behaviour

e Invariants are formal documentation:

o Pre-/postconditions, class invariants
o Effect specifications
o Dependency specifications

e Formal semantics: amenable to formal methods, testing

Example:

ArrayStack.peek() requires preconditions:
storageArray != null
topOfStackIndex >= 0
topOfStackIndex < storageArray.length

Limitations of current invariant-based approaches

e Invariants sometimes hard to write
Partly addressed by invariant inference
(e.g., Daikon, DIDUCE, DySy, Heureka, ...)
e Can bury important information
E.g., some Daikon-inferred specifications for simple methods
have dozens of axioms
e Can involve redundancy

e Can be inconsistent with higher-level knowledge

ArrayStack.peek() requires: ArrayStack.pop() requires:
array != null array != null
topOfStack >= 0 topOfStack >= 0

topOfStack < array.length topOfStack < array.length-1

Limitations of current invariant-based approaches

e Invariants sometimes hard to write
Partly addressed by invariant inference
(e.IDUCE, DySy, Heureka, ...)

e Can bury important information
E.g., some Daikon-inferred specifications for simple methods
hav.

- X
ZeRS5=OT axIoINS

e Can involve redundancy
e Can be inconsistent with higher-level knowledge

ArrayStack.peek() requires: ArrayStack.pop() requires:
array != null array != null
topOfStack >= 0 topOfStack >= 0

topOfStack < array.length topOfStack < array.length-1

Second-Order Constraints

Our approach: constraints between sets of invariants

Second-Order Constraints

Our approach: constraints between sets of invariants

Examples:
o if we meet all preconditions of ‘peek’ we also meet all
preconditions of ‘pop’:
SUBDOMAIN(peek, pop)

Second-Order Constraints

Our approach: constraints between sets of invariants

Examples:
o if we meet all preconditions of ‘peek’ we also meet all
preconditions of ‘pop’:
SUBDOMAIN(peek, pop)

ArrayStack.peek() requires: SUBDOMAIN(peek, pop)
array != null
topOfStack >= 0
topOfStack < array.length

Second-Order Constraints

Our approach: constraints between sets of invariants

Examples:
o if we meet all preconditions of ‘peek’ we also meet all
preconditions of ‘pop’:
SUBDOMAIN(peek, pop)
e ‘pop’ is safe to call after ‘push’:
CaNFoLLow(push, pop)

Second-Order Constraints

Our approach: constraints between sets of invariants

Examples:

o if we meet all preconditions of ‘peek’ we also meet all
preconditions of ‘pop’:
SUBDOMAIN(peek, pop)

e ‘pop’ is safe to call after ‘push’:
CaNFoLLow(push, pop)

@ ‘invert3x3Matrix’ works like ‘invertMatrix’, but may have
stronger preconditions:
CONCORD(invertMatrix, invert3x3Matrix)

Applying second-order constraints to Daikon

Program

Invariant
QEEE
EHLNY Generate

Functionality

Observe

1st-order invariants

Applying second-order constraints to Daikon

e Hand-written documentation

2nd-order constraints

Program

Invariant
QEEE
EHLNY Generate

Functionality

Observe

1st-order invariants

Applying second-order constraints to Daikon

e Hand-written documentation

e Two software tools:
O Hints for first-order invariant inference

2nd-order constraints

Program

Invariant
QEEE
EHLNY Generate

Functionality

Observe

1st-order invariants

Applying second-order constraints to Daikon

e Hand-written documentation

e Two software tools:

O Hints for first-order invariant inference
® Automatically inferred higher-level documentation

2nd-order constraints

Program

Functionality

1st-order invariants

A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is

A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is
e SUBRANGE(intersect, clear)
‘clear’ ensures at least as many invariants as ‘intersect’

A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is
e SUBRANGE(intersect, clear)
‘clear’ ensures at least as many invariants as ‘intersect’

o CANFoOLLOW(connect, send)
‘connect’ provides the requirements for ‘send’ is

A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is
e SUBRANGE(intersect, clear)
‘clear’ ensures at least as many invariants as ‘intersect’
o CANFoOLLOW(connect, send)
‘connect’ provides the requirements for ‘send’ is
e FoLLows(push, pop)
Anyone calling ‘pop’ may call ‘push’ first

A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is
e SUBRANGE(intersect, clear)
‘clear’ ensures at least as many invariants as ‘intersect’
o CANFoOLLOW(connect, send)
‘connect’ provides the requirements for ‘send’ is
e FoLLows(push, pop)
Anyone calling ‘pop’ may call ‘push’ first
e CONCORD(computeGeneralFFT, computeCoprimeFFT)

‘computeCoprimeFFT' has behavioural subtype of
‘computeGeneralFFT’

A catalogue of second-order constraints

e SUBDOMAIN(peek, pop)
‘pop’ is applicable whenever ‘peek’ is
e SUBRANGE(intersect, clear)
‘clear’ ensures at least as many invariants as ‘intersect’
o CANFoOLLOW(connect, send)
‘connect’ provides the requirements for ‘send’ is
e FoLLows(push, pop)
Anyone calling ‘pop’ may call ‘push’ first
e CONCORD(computeGeneralFFT, computeCoprimeFFT)

‘computeCoprimeFFT' has behavioural subtype of
‘computeGeneralFFT’

Other useful properties are conceivable

Logical structure of our constraint catalogue

requires ensures
pre (A) post (A)

pre (B) post (B)

Logical structure of our constraint catalogue

requires ensures
pre (A) post (A)
SUBDOMAIN

pre ,(B) post (B)

Logical structure of our constraint catalogue

requires ensures
pre (A) post (A)
SUBDOMAIN SUBRANGE

A 4

pre ,(B) post (B)

Logical structure of our constraint catalogue

requires ensures
pre (A) post (A)

£
OLLO[/VS

SUBDOMAIN SUBRANGE

pre ,(B) post (B)

Logical structure of our constraint catalogue

requires ensures
pre (A) post (A)

SUBDOMAIN SUBRANGE

CONCORD

Inference with Second-Order Constraints

0 Refined First-Order Inference

@ User provides hand-written
second-order constraints

2nd-order constraints

Invariant
Inference

(OEIGY Generat

e>

1st-order invariants

(® Second-Order Inference

o System infers second-order
constraints

2nd-order constraints

Invariant Invariant abstraction

Inference

(Daikor Generate>

1st-order invariants

Refined First-Order Inference

ArrayStack s = new ArrayStack();
s.push("bar");
s.push("foo");

assert s.peek() == "foo";
assert s.pop() == "foo";
assert s.peek() == "bar";

ArrayStack.peek() requires ArrayStack.pop() requires

Refined First-Order Inference

ﬂ array = ArrayStack s = new ArrayStack();
1 s.push("bar");
s.push("foo");
0 assert s.peek() == "foo";
assert s.pop() == "foo";
tos —» -1 assert s.peek() == "bar";

ArrayStack.peek() requires ArrayStack.pop() requires

Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
1 =s.push("bar");
s.push("foo");
tos = "bar" | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 assert s.peek() == "bar”;

ArrayStack.peek() requires ArrayStack.pop() requires

Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
tos =3 "foo” | 1 s.push("bar");
=s.push("foo");
"bar” | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 assert s.peek() == "bar”;

ArrayStack.peek() requires ArrayStack.pop() requires

Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
tos =3 "foo” | 1 s.push("bar");
s.push("foo");
"bar” | 0 =assert s.peek() == "foo";
aggrt s.pop() == "foo";
-1 Ssert s.peek() == "bar”;

ArrayStack.peek() requires ArrayStack.pop() requires
array !=null
tos=1

Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar" | 0 assert s.peek() == "foo";
=assert s.pop() == "foo";
-1 == "bar";

ArrayStack.peek() requires ArrayStack.pop() requires
array !=null array !=null
tos=1 tos =1

Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar" | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 = assert s.peek() == "bar";

ArrayStack.peek() requires ArrayStack.pop() requires
array !=null array !=null
tos=1...7 tos =1

Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar" | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 = assert s.peek() == "bar";

ArrayStack.peek() requires ArrayStack.pop() requires
array !=null array !=null

oS T—————————"" tos=1

tos >=0

Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar" | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 =assert s.peek() == "bar";

(SUBDOMAIN(peek pop

ArrayStack.peek() requires ArrayStack.pop() requires
array !=null array !=null

oS T—————————"" tos=1

tos >=0

Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar" | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 assert s.peek() == "bar”;

SUBDOAI(peek, pop)

ArrayStack.peek() requires ArrayStack.pop() requires
array !=null array !=null

fos =T Tos = T

tos >=0 tos >=0

Refined First-Order Inference

ﬂ array ArrayStack s = new ArrayStack();
oo | 1 s.push("bar");
s.push("foo");
tos = "bar” | 0 assert s.peek() == "foo";
assert s.pop() == "foo";
-1 assert s.peek() == "bar”;

ArrayStack.peek() requires ArrayStack.pop() requires
ar = =

—| Each second-order constraint propagates —

tof . . .
+olinformation across Daikon

Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

peek() ensures pop() ensures
return.class == String return.class == String
this has only one value this has only one value

return has only one value

Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

peek() ensures pop() ensures
return.class == String return.class == String
this has only one value this has only one value

return has only one value

post(peek) = return.class == String? j

1

confidence = R

Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

peek() ensures pop() ensures
return.class == String return.class == String
this has only one value this has only one value

return has only one value

post(peek) = this has only one value? ﬂ

1+1

confidence = T

Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

peek() ensures pop() ensures
return.class == String return.class == String
this has only one value this has only one value

F return has only one value

post(peek) = return has only one value? ﬁ

1+140

confidence = R

Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

e Incorporate per-invariant Daikon Confidence metrics

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

DC peek() ensures DC pop() ensures
.9 return.class == String .7 return.class == String
.8 this has only one value .6 this has only one value

.5 return has only one value

confidence =

Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

e Incorporate per-invariant Daikon Confidence metrics

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

DC peek() ensures DC pop() ensures
.9 | return.class == String .7 return.class == String
.8) this has only one e .6 this has only one value

.5 return has only one value

9x.8()

confidence =

Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

e Incorporate per-invariant Daikon Confidence metrics

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

DC peek() ensures DC pop() ensures
.9 return.class == String .7 return.class == String
.8 this has only one value .6 this has only one value

.5 return has only one value

post(peek) = return.class == String? ﬁ

9x.8(.7)
1

confidence =

Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

e Incorporate per-invariant Daikon Confidence metrics

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

DC peek() ensures DC pop() ensures
.9 return.class == String .7 return.class == String
.8 this has only one value .6 this has only one value

.5 return has only one value

post(peek) = this has only one value? ﬁ

Ix.8(.7+6)
1+1

confidence =

Second-Order Inference

e Hypothesise all possible 2nd-order constraints per class

e Compute fraction of overlap (using automated theorem prover):
determine a confidence metric on 2nd-order constraint

e Incorporate per-invariant Daikon Confidence metrics

Example hypothesis: SUBRANGE(ArrayStack.pop, ArrayStack.peek)

DC peek() ensures DC pop() ensures
.9 return.class == String .7 return.class == String
.8 this has only one value .6 this has only one value

.5 return has only one value

post(peek) = return has only one value? ﬁ

: _.9%.8(.74.640)
confidence = T

Evaluation (overview)

0 Refined First-Order Inference

o Evaluated changes to inferred
first-order invariants

e Second-order constraints
written by hand for:
o Daikon's StackAr
o 18 Apache Commons
Collections classes
o 7 AspectJ classes

(® Second-Order Inference

e Evaluated generated
second-order constraints

o For all hand-written
second-order constraints
o For random classes:

o 2 Apache Commons
Collections
o 2 AspectJ

o Confidence threshold: 0.75

Evaluation (overview)

0 Refined First-Order Inference

o Evaluated changes to inferred
first-order invariants

e Second-order constraints
written by hand for:
o Daikon's StackAr
o 18 Apache Commons
Collections classes
o 7 AspectJ classes

Evaluation: Refined Invariant Inference (1)

StackAr: Daikon's stack-based array implementation
@ int topOfStack: top-of-stack location

int[] theArray: stack representation

pop(): remove top element

top(): peek at top element value

topAndPop(): remove top element and return it

Evaluation: Refined Invariant Inference (1)

StackAr: Daikon's stack-based array implementation
@ int topOfStack: top-of-stack location

int[] theArray: stack representation

pop(): remove top element

top(): peek at top element value

topAndPop(): remove top element and return it

SUBDOMAIN(POP, TOP)
SUBDOMAIN(TOP, TOPANDPOP)
SUBDOMAIN(TOPANDPOP, POP)

Evaluation: Refined Invariant Inference (1)

StackAr: Daikon's stack-based array implementation

int topOfStack: top-of-stack location

int[] theArray: stack representation

pop(): remove top element

top(): peek at top element value

topAndPop(): remove top element and return it

SUBDOMAIN(POP, TOP)
SUBDOMAIN(TOP, TOPANDPOP)
SUBDOMAIN(TOPANDPOP, POP)

Removed 5 false invariants:

e this has only one value
theArray has only one value
theArray.length == 100
theArray[topOfStack] != null
topOfStack < theArray.length-1

Evaluation: Refined Invariant Inference (1)

StackAr: Daikon's stack-based array implementation
@ int topOfStack: top-of-stack location
@ int[] theArray: stack representation
@ pop(): remove top element
@ top(): peek at top element value
@ topAndPop(): remove top element and return it

SUBDOMAIN(POP, TOP)
SUBDOMAIN(TOP, TOPANDPOP)
SUBDOMAIN(TOPANDPOP, POP)

o Removed 5 false invariants:
Added 2 new invariants:
o this.topOfStack >= -1
o DEFAULT_CAPACITY != theArray.length-1

Evaluation: Refined Invariant Inference (1)

StackAr: Daikon's stack-based array implementation
@ int topOfStack: top-of-stack location

int[] theArray: stack representation

pop(): remove top element

top(): peek at top element value

°
°
°
@ topAndPop(): remove top element and return it

SUBDOMAIN(POP, TOP)
SUBDOMAIN(TOP, TOPANDPOP)
SUBDOMAIN(TOPANDPOP, POP)

e Removed 5 false invariants:
o Added 2 new invariants:
o Refined 1 overly-specific invariants:

this.topOfStack < size(this.theArray[])-1

4

this.topOfStack <= size(this.theArray[])-1

Evaluation: Refined Invariant Inference (2)

2nd-order 1st-order
Constraints Invariants
Experiment Written | Added \ Removed \ Refined
StackAr #1 3 2 5 1
StackAr #2 3 3 4 0
Apache Commons 26 | 25 +1 35 5
Collections
AspectJ 26 | 12 +1 12 3

e Most changes positive
e Only two incorrect invariants introduced

o Both due to nonmonotonicity in the underlying first-order
invariant inference mechanism

Evaluation: Refined Invariant Inference (2)

2nd-order 1st-order
Constraints Invariants
Experiment Written | Added \ Removed \ Refined
StackAr #1 3 2 5 1
StackAr #2 3 3 4 0
Apache Commons 26 | 25 +1 35 5
Collections
AspectJ 26 | 12 +1 12 3

e Most changes positive
e Only two incorrect invariants introduced

o Both due to nonmonotonicity in the underlying first-order
invariant inference mechanism

Overwhelmingly positive effects

Evaluation (overview)

(® Second-Order Inference

e Evaluated generated
second-order constraints

e For all hand-written
second-order constraints
e For random classes:

e 2 Apache Commons
Collections
o 2 AspectJ

o Confidence threshold: 0.75

Evaluation: Second-Order Inference

© Confirming our manual annotations:
Of our 64 original manual annotations:

o 37 we inferred
e 27 we did not infer, of which:
e 12 we had wrongly annotated
e 7 lacked any supporting data samples
e 6 we rejected due to ‘noise’ first-order invariants
e 2 were Concord

Evaluation: Second-Order Inference

© Confirming our manual annotations:
Of our 64 original manual annotations:

o 37 we inferred

o 27 we did not infer, of which:
e 12 we had wrongly annotated
e 7 lacked any supporting data samples
e 6 we rejected due to ‘noise’ first-order invariants
e 2 were Concord

@ Finding new second-order constraints:
inferred incorrect

Apache Commons: AbstractMapBag 2 0
Apache Commons: SingletonMap 806 0
Aspect] Reflection: 30 0
Aspect] LstBuildConfigManager: 112 5

Evaluation: Second-Order Inference

© Confirming our manual annotations:
Of our 64 original manual annotations:
o 37 we inferred
e 27 we did not infer, of which:

e 12 we had wrongly annotated

e 7 lacked any supporting data samples

e 6 we rejected due to ‘noise’ first-order invariants
e 2 were Concord

@ Finding new second-order constraints:
IMMUTABLE class suggests even hlgher—order invariants!

TPOCTTC CUTTTITTITOTI

@he Commons SmgletonMap 806 O >
Aspect] Reflection: 30 0

AspectJ LstBuildConfigManager: 112 5

Evaluation: Second-Order Inference

© Confirming our manual annotations:
Of our 64 original manual annotations:
o 37 we inferred
e 27 we did not infer, of which:

e 12 we had wrongly annotated

e 7 lacked any supporting data samples

e 6 we rejected due to ‘noise’ first-order invariants
e 2 were Concord

@ Finding new second-order constraints:
inferred incorrect
Apache Commons: AbstractMapBag 2 0

Incomplete unit tests = Poor Daikon invariants
W —T—

<Aspect) LstBuildConfigManager: 112 5 >

Conclusions

Second-order constraints:
o Permit high level of discourse about
program properties
o Refine the quality of detected
first-order invariants
o Can be detected automatically

o Are easy to use and powerful

