
ReproLite : A Lightweight Tool to Quickly Reproduce Hard System Bugs

Kaituo Li
University of Massachusetts,

Amherst
kaituo@cs.umass.edu

Pallavi Joshi
NEC Laboratories America

pallavi@nec-labs.com

Aarti Gupta
NEC Laboratories America

agupta@nec-labs.com

Malay K. Ganai
NEC Laboratories America

tomalgan@gmail.com

Abstract
Cloud systems have become ubiquitous today – they are
used to store and process the tremendous amounts of data
being generated by Internet users. These systems run on
hundreds of commodity machines, and have a huge amount
of non-determinism (thousands of threads and hundreds of
processes) in their execution. Therefore, bugs that occur in
cloud systems are hard to understand, reproduce, and fix.
The state-of-the-art of debugging in the industry is to log
messages during execution, and refer to those messages later
in case of errors. In ReproLite, we augment the already
widespread process of debugging using logs by enabling
testers to quickly and easily specify the conjectures that they
form regarding the cause of an error (or bug) from execution
logs, and to also automatically validate those conjectures.

ReproLite includes a Domain Specific Language (DSL)
that allows testers to specify all aspects of a potential sce-
nario (e.g., specific workloads, execution operations and
their orders, environment non-determinism) that causes a
given bug. Given such a scenario, ReproLite can enforce the
conditions in the scenario during system execution. Potential
buggy scenarios can also be automatically generated from a
sequence of log messages that a tester believes indicates the
cause of the bug. We have experimented ReproLite with 11
bugs from two popular cloud systems, Cassandra and HBase.
We were able to reproduce all of the bugs using ReproLite.
We report on our experience with using ReproLite on those
bugs.

Copyright c© 2014 by the Association for Computing Machinery, Inc. (ACM). Permis-
sion to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’14, 3-5 Nov. 2014, Seattle, Washington, USA.
ACM 978-1-4503-3252-1.
http://dx.doi.org/10.1145/2670979.2671004

Categories and Subject Descriptors D.2.5 [SOFT-
WARE ENGINEERING]: Testing and Debugging; C.2.4
[COMPUTER-COMMUNICATION NETWORKS]: Dis-
tributed Systems

Keywords Debugging, Lightweight, Cloud Computing,
Hard System Bug

1. Introduction
Large-scale distributed systems (or cloud systems) that run
on hundreds of machines (nodes) are increasingly being used
by today’s software companies to host, process, and an-
alyze the tremendous amount of data being generated by
their enormous numbers of users (tens of thousands or even
millions of users). These systems are complex with huge
amounts of non-determinism (thousands of threads and hun-
dreds of processes), not only within each process but also
across different processes. Thus, it is hard to find, reproduce,
and understand bugs in distributed systems [18]. Even af-
ter a bug has been discovered in an execution, a subsequent
execution of the same system under the same environment
and configuration might not result in the bug. Bugs often oc-
cur under specific conditions - specific workloads, specific
schedules of operations (events) within a node or across dif-
ferent nodes, specific external non-deterministic events (e.g.,
garbage collection, node crash, network failures, etc.) in the
execution environment or in the hardware used by the sys-
tem. Finding the conditions responsible for a bug and enforc-
ing those conditions during system execution to reproduce
the bug are hard.

The state-of-the-art of debugging cloud systems in the in-
dustry is logging messages during execution, and referring
to the messages later when there is an error. The log mes-
sages can often provide hints regarding the cause of the er-
ror. But, even after forming a hunch regarding the cause of
the error, it takes significant effort to validate the hunch (e.g.,
inserting sleeps to try to enforce a particular order of events,
physically bringing network links down, etc.). Many a time

testers fix their code based on their hunch, and if the error
or the bug does not show up during execution after the fix,
they declare victory over the bug. Just because the bug did
not show up after the fix does not mean that it has really been
fixed – the executions subsequent to the fix might not have
exhibited the conditions necessary for the bug (which might
still be feasible after the fix).

There has been a lot of work [16, 21, 24, 25, 27]
on record-and-replay systems that record the partial-order
among non-deterministic operations in a system execution
(e.g., order of racing memory accesses, network messages,
preemptions, OS signals, etc.) and later replay the partial or-
der to deterministically reproduce the observed execution.
However, logging involves a significant overhead, and devel-
opers do not want to incur a huge overhead by aggressively
recording all non-determinism in an execution. Instead of
increasing logging for a system, we help testers to form hy-
potheses regarding the cause of a bug from incomplete logs
(that do not record all non-determinism), and validate those
hypotheses quickly with little execution overhead.

ReproLite augments the already widespread process of
using logs for debugging by providing support for validat-
ing the cause of a bug that testers infer from execution logs.
It has a Domain Specific Language (DSL) in which testers
can easily and quickly express the potential cause of the bug
(workload, schedule of system events, external events). Re-
proLite can then reproduce the potential buggy scenario ex-
pressed in the DSL. It instruments the system binaries so that
it can observe the system events in the DSL during execu-
tion. As the system executes, ReproLite executes the work-
load specified by the tester, and enforces the specified or-
der among the system events and external events. If the bug
is reproduced by the specified scenario, then the tester has
validated her hunch and the specification for the bug allows
her to communicate her observations to the developers in a
succinct and precise manner. ReproLite also gives the devel-
opers a means to reproduce the bug over and again that can
help them to understand and fix the bug. Even if the hunch
was wrong and the bug did not get reproduced, the tester can
learn from the execution enforced by ReproLite, update her
conjecture regarding the cause of the bug, and re-validate
the updated conjecture. Note that our DSL allows ordering
of events from different processes and workloads, and not
only for events in a single process as in previous work (e.g.,
Concurrit [14]). Section 6 has more details and comparison
against related work.

Given a sequence of log messages that the tester believes
reflects the order of system events that caused the bug, Re-
proLite can automatically generate the corresponding sce-
nario in the DSL and constrain the execution in a way that
the given log messages execute in the given order. In our ex-
periments with real-world cloud system bugs, we found that
for most (70 %) of the bugs that we studied, part of the cause
of the bug was hidden in the order of a few log messages.

Thus, if the tester can find the relevant log messages, then
ReproLite can reproduce the bug using the order of those
messages.

The main contributions of our work are:

1. We have designed and implemented a DSL in which
testers can quickly express potential buggy scenarios by
expressing the specific workload needed to trigger the
bug, system events and their order that would lead to
the bug, and any external events like garbage collection,
node crash, or network failures that are also responsible
for the bug. The DSL makes it easy for testers to specify
all aspects of a bug (workload, event order, etc.) in one
place.

2. We have implemented a tool that can reproduce a buggy
scenario expressed in the DSL. The tool can execute the
specified workload, intercept the system events expressed
in the DSL and enforce them to execute in the given or-
der, and also trigger or emulate specified external events
during execution. The DSL and the reproduction engine
augment the widespread debugging process of using logs
by enabling testers to validate the conjectures that they
form from execution logs.

3. We experimented with using ReproLite to debug 11
bugs from two real-world cloud systems: Cassandra and
HBase. We could reproduce all of the bugs using Repro-
Lite. We report on our experience in Section 4. An inter-
esting finding was that for most (70 %) of the bugs, the
cause of the bug was hidden in the log messages. After
we found the right set of log messages (as is done in the
current practice of debugging using logs), ReproLite was
able to automatically generate system event definitions
and their order in the buggy scenario, replay the scenario,
and exhibit the bug.

In the rest of the paper, we provide an overview of Repro-
Lite using a real-world cloud system in Section 2, explain
the internals of ReproLite in Section 3, and evaluate Repro-
Lite on bugs in real-world cloud systems in Section 4. We
compare our work with other related work in Section 6.

2. Overview
In this section, we show how ReproLite works using a bug
from HBase [7], a distributed data store. HBase hosts data
as tables which are in turn divided into regions. Each re-
gion is served by a particular kind of HBase node known
as a regionserver. All read and write requests to a region
are handled by the regionserver hosting that region. When
a region grows and becomes larger than a pre-defined size
(that can be configured), it is split into two by the region-
server. There is a master node in HBase that monitors the re-
gionservers. When a regionserver goes down, the master re-
assigns the regions hosted by the regionserver to other alive
regionservers. HBase uses another distributed system called

bug.sc:

E1[node]=‘regionserver ’

E1[stack]=‘ createNodeSplitting ’

E2[node]=‘master ’

E2[stack]=‘ addSplittingToRIT

handleRegion ’

E3[node]=‘master ’

E3[stack]=‘ NavigableMap.remove

ServerShutdownHandler.process ’

E4[node]=‘master ’

E4[stack]=‘ regionOffline

AssignmentManager.nodeDeleted ’

Figure 1. Relevant events in the HBase bug HBASE-6070

ZooKeeper [2] to manage its configuration (e.g., which re-
gions have been assigned to which regionservers). Hadoop
Distributed File System [6] is used to store and replicate
data.

There is a bug in HBase (HBase-6070 [1]) that occurs
when a regionserver is starting to split a region that has
grown beyond the pre-defined limit. Just as the regionserver
starts to split by changing the configuration information in
ZooKeeper regarding the region, the regionserver crashes.
There is a callback that runs in the master when the master
detects that the regionserver has crashed, and there is another
callback that also runs in the master when the master detects
that the region that was beginning to split has gone offline.
If the two callbacks interleave in a certain manner, then the
master mistakenly believes that the region has already split,
and does not re-assign the region to another regionserver. As
a result, clients lose access to any data in that region. This is
a serious bug and has been classified as “Major” by HBase
developers.

HBase-6070 occurs under very specific conditions: a re-
gionserver crashes just when it starts splitting a region, and
the two callbacks in the master in response to the crash and
the offlining of the region interleave in a manner that mis-
leads the master about the state of the region being split.
Enforcing these conditions is hard – one would have to mod-
ify the source code to kill the node after it starts splitting a
region, and add sleep’s to try to enforce the specific inter-
leaving between the callbacks (which might not be always
be successful). Using the DSL RT of ReproLite, a tester can
quickly express the scenario that leads to HBase-6070 as in
Figure 2. ‘*’ and || express scheduling constraints. p ∗ q
means execute p then q, and p||q means execute p and q
simultaneously (Section 3.1).

Figure 2 indicates that the workload component W1

should be executed followed by W2. The workload compo-
nents are described in detail later in Section 3.1. W1 creates

bug.sc:

W1=‘create -table -cf.sh test cf’

W2=‘insert.sh 20 test cf’

W3=‘flush.sh test ’

W4=‘compact.sh test ’

S1=block after E1

S2=unblock after E1

X1=node -down ‘regionserver ’

W1 * W2 *

(W3 * W4 ||

E1 * S1 * E2 * S2 * X1

* E3 * E4)

Figure 2. The buggy scenario for HBASE-6070 in RT. The
definition of workload components and events are provided
in Figures 5 (Section 3.1) and 1.

a table and a column family, and W2 inserts data into the
column family. The amount of data inserted is more than the
amount that would trigger region splitting (maximum size of
regions can be configured by the tester). W3 is then executed
that flushes the table to disk, and then W4 that compacts the
table. During flushing and compaction, if the region is found
to have grown beyond its limit, splitting of the region is ini-
tiated.

As W3 and W4 execute, the scenario in Figure 2 enforces
certain constraints on the execution in HBase. The event E1
should execute in a regionserver, followed by E2 in the mas-
ter, and then X1 that crashes the regionserver. E1 and E2 in-
dicate the beginning of a region split. The events have been
defined in Figure 1. An event is either the execution of an op-
eration in the given system (e.g., E1) or an operation or phe-
nomenon in the execution environment (e.g., garbage collec-
tion and network failures). Section 3.1 explains how events
can be defined in the DSL. S1 and S2 in Figure 2 specify
further scheduling constraints, ensuring that the regionserver
crashes before proceeding any further after E1. The ”block
after” and ”unblock after” constructs in S1 and S2 apply to
the thread that has executed E1. S1 leaves the thread blocked
after it completes E1. S2 is called to unblock the thread af-
terwards. The master should then execute E3 followed by E4

for the bug to occur.
Given the scenario in Figure 2, ReproLite instruments

HBase binaries so that it can observe when splitting of a
region begins, and when the callbacks in the master (that is,
events E1, E2, E3, and E4) execute. Since there are only a few
events that ReproLite has to track (as is the case with most
of the bugs), the overhead of instrumentation is minimal.
ReproLite executes the workload (W1, W2, W3, W4) specified
in the scenario, tracks and enforces the order between E1,
E2, E3, and E4, and also brings down the regionserver (X1)
after E2. A tester can use ReproLite to reproduce HBASE-

In regionserver ’s logs:

2014 -01 -24 15:54:30 ,642 DEBUG
regionserver.SplitTransaction (SplitTransaction.
java:createNodeSplitting(857)) - regionserver:
60020 -0 x143c607d6120004 Creating ephemeral node
for 5d755f81b0421a673223facdcb7bfecc in SPLITTING
state

In master ’s logs:

2014 -01 -24 15:54:44 ,256 DEBUG master.
AssignmentManager (AssignmentManager.java:
handleRegion(699)) - Handling transition=
RS ZK REGION SPLITTING , server=d2.nec -labs.com ,
60020 ,1390596846260 , region=
5d755f81b0421a673223facdcb7bfecc

2014 -01 -24 15:55:27 ,276 DEBUG handler.
ServerShutdownHandler (ServerShutdownHandler.
java:process(275)) - Removed test , ,1390596882207.
5d755f81b0421a673223facdcb7bfecc. from list of
regions to assign because in RIT; region state:
SPLITTING

2014 -01 -24 15:55:26 ,030 DEBUG master.
AssignmentManager (AssignentManager.java:
nodeDeleted(1122)) - Ephemeral node deleted ,
regionserver crashed?, clearing from RIT;
rs=test , ,1390596882207.
5d755f81b0421a673223facdcb7bfecc. state=SPLITTING ,
ts =1390596884258 , server=d2.nec -labs.com ,60020 ,
1390596846260

Figure 3. Log messages relevant for HBASE-6070. Com-
ponents of the log messages relevant to the bug are italicized
and are in boldface.

6070 repeatedly in order to understand how to fix it. After
the fix, the tester can again use ReproLite to ensure that
HBASE-6070 has indeed been fixed. Thus, the RT scenarios
can serve as regression tests.

In order to write the potential scenario for a bug, a tester
needs to have a hunch regarding the cause of the bug. The
logs of the execution in which the bug unexpectedly oc-
curred are a good place to start. This is in fact how bugs are
found and understood in cloud systems. After forming an
intial conjecture regarding the cause, the tester can quickly
express the cause in the DSL and validate using ReproLite.
Even if the bug is not reproduced using the intial conjecture,
the tester can refine it and re-validate it based on what she
obseved and learnt from the execution enforced by Repro-
Lite for the intial conjecture. In fact, for most (70 %) of the
bugs that we experimented with, we saw that the logs often
contained the cause of the bug in them. For example, Fig-
ure 3 shows the log messages that indicate the system events
and their order that caused the bug. The first log message
corresponds to event E1 (Figure 1), the second to E2, third
to E3, and fourth to E4. Once a tester has figured out a set of
log messages that potentially indicate the cause of the bug,
ReproLite can automatically create the potential buggy sce-
nario and reproduce it.

Logs

RL
Candidate

Buggy
Scenario in RT

RE

Tester

ReproLite

Cloud
system

Scheduling
decisions

Relevant
events

Figure 4. Overall architecture of ReproLite

3. ReproLite Internals
In this section, we explain the architecture (Figure 4) and
workings of ReproLite. There are three key components of
ReproLite: RT, the domain specific language (DSL) that
enables testers to easily and quickly express their various
hunches regarding the workload, events, and their execution
order that caused a given bug, RE, the reproduction engine
that enforces the given execution order, and RL, the log
analyzer that can automatically generate potential buggy
scenarios in RT from execution logs that can be inspected
and further modified by a tester. The following sections
explain the three components in more detail.

3.1 RT: The DSL to Express Potential Buggy
Executions

RT enables a tester to easily and quickly express the scenario
(workload, event orders, external events) that could poten-
tially have led to a given bug. The reproduction engine (Sec-
tion 3.2) enforces the expressed scenarios, and thus, helps
the tester to find out the specific scenario and conditions that
caused the bug. We will also show later (Section 3.3) how
a tester can infer hints regarding the buggy scenario from
execution logs.

3.1.1 Expressing workload
In order to express an execution scenario, we need to specify
the workload that was executed in that scenario. Sometimes,
a bug might occur without any workload (e.g., a bug that oc-
curs when the system nodes are booting up) in which case
we need not specify the workload, but often a bug is trig-
gered only under specific workloads (e.g., only when a col-
umn family is dropped in Cassandra or only when a table is
disabled in HBase). To specify a workload, we need to create
(if not already present) and provide the names of executa-
bles for different kinds of client requests in the workload.
For example, let’s say that we want to create a table and a
column family and insert some data into that column family
in HBase. Then, we can create the executables as shown in
Figure 5 to create a table and a column family, and to insert

insert.sh:

N=$1; tb=$2; cf=$3

for ((i = 1; i <= N; i++)); do

echo put \’$tb\’, \’row\’, \’$cf:a$i\’

,\’v$i\’ >> tmp; done

echo exit >> tmp

hbase shell tmp; rm tmp

Figure 5. Insert data into a table and a column family in
HBase. Scripts to create table and column family (create-
table-cf.sh), flush (flush.sh) and compact (compact.sh) a ta-
ble are similarly implemented.

data into a column family. We use the names of the executa-
bles to specify our workload as shown under bug.sc (part
of the buggy scenario written using RT) in the same figure.
W1 * W2 * W3 * W4 indicates the sequence of W1, W2, W3,
and W4. Since the kinds of requests that can be made against
a system (e.g., create table, insert into table, delete table, etc.
in Cassandra) are limited, we can create executables for all
(or most) of those kinds of requests, and let different testers
re-use those executables for their workloads.

3.1.2 Expressing event orders
Apart from specifying the workload in a buggy scenario, RT
also lets a tester specify the events and their order during ex-
ecution that could have led to the given bug. Since there is a
tremendous amount of non-determinism during execution in
a cloud system, many a time a bug can occur under a specific
schedule of events and might not show up under other sched-
ules of those events. For example, in HBase, we cannot ac-
cess data in a region (a chunk of a table) at all when the node
hosting that region (a regionserver) crashes just when it had
started to split the region, and when the two callbacks regard-
ing the crash in the master node (node monitoring all region-
servers) interleave in a specific manner (HBASE-6070 [1]).
There are multiple events across different nodes that need to
execute in a specific order for the HBase bug to show up. A
tester can specify such events and their execution order in
RT.

To specify an event, we specify its execution context.
For example, to specify the starting of the splitting of
a region in a regionserver (a relevant event in HBASE-
6070 as described before), we can specify part of its ex-
ecution context – the node in which the event is exe-
cuting (regionserver) and the method that is executing
(SplitTransaction.createNodeSplitting). Figure 1
illustrates how the events in HBASE-6070 can be expressed
in RT. There are four relevant events – E1, E2, E3, and E4.
For each event, different aspects of its execution context
have been specified – the node that the event is executing
on and a part of its execution stack. There are other aspects
of the context that can be expressed, e.g., the arguments to
the executing method, thread ID (not the runtime ID but an

integer that distinguishes the thread from other threads), the
remote node that sent data or is going to receive data (in case
of network I/O), etc.

To specify an event order, a tester can sequence different
events using the sequence operator *. For example, E1 * E2

* E3 * E4 indicates the order in which E1 executes before
E2, E2 before E3, and E3 before E4. The tester can also use
the parallel operator (||) to express that two events should
execute concurrently and that the order between them is not
important. For example, E1 * (E2 || E3) indicates the or-
der in which E1 executes, and then E2 and E3 execute in
either order. In addition, one can also block the execution of
a thread after a specific event, and direct to resume its execu-
tion later after another event. For example, in HBASE-6070,
after executing E1, the thread in regionserver should pro-
ceed only after E2 has been executed in master. A tester can
specify this constraint using E1 * S1 * E2 * S2 * E3

* E4, where S1=‘block after E1’ and S2=‘unblock

after E1’. The block and unblock keywords provide a
convenient mechanism to express certain scheduling con-
straints.

3.1.3 Expressing external events
Lastly, RT enables one to also specify external non-
deterministic events that can occur in the execution environ-
ment (e.g., garbage collection) or in the hardware on which
the system is executing (e.g., node crash, network failure be-
tween nodes, disk failures, etc.). Sometimes, a bug would
occur only when a non-deterministic external event unex-
pectedly occurs during execution, e.g., when the region-
server crashes when starting to split a region in HBASE-
6070 as explained earlier. To specify an external event, a
tester has to use the appropriate keyword provided in the
DSL : node-down for a node crash and node-up for re-
booting a node if it is down, nw-link-down for bring-
ing a network link down and nw-link-up for bringing a
link up if it is down, gc for invoking the garbage col-
lector, etc. We can also specify the node that we want to
crash/reboot, or the link that we want to bring down/up, e.g..
node-down regionserver would crash a regionserver,
and nw-link-down master regionserver would bring
the network between the master and a regionserver down.

To put it all together, Figure 2 shows how the buggy
scenario for HBASE-6070 can be written in RT.

3.1.4 Formalization
Figure 6 shows the syntax of RT. Some of the details are
omitted for space constraints.

Figure 7 shows the operational semantics of ReproLite.
We consider the state of ReproLite to be a tuple consisting
of the following:

• σ : the state of the SUT (software under test).

WL ::= W SP |WL SP W Workloads
W ::= WID ‘=’ 〈 STRING 〉 Workload script name with args
WID ::= ‘W’ 〈 INTEGER 〉
SP ::= ‘\n’

ENL ::= EN SP | ENL SP EN Internal Events
EN ::= EID “[node]” ‘=’ 〈 STRING 〉 Node ID of an event
ESL ::= ES SP | ESL SP ES
ES ::= EID “[stack]” ‘=’ 〈 STRING 〉 Stack trace as string
EID ::= ‘E’ 〈 INTEGER 〉
· · · Similar rules for thread ID, remote node, etc.

XL ::= X SP | XL SP X External events
X ::= XID ‘=’ XOP 〈 STRING 〉
XOP ::= “node-down” | “garbage collection” | · · ·
XID ::= ‘X’ 〈 INTEGER 〉

SCL ::= SC SP | SCL SP SC Scheduling constraints
SC ::= SID ‘=’ SAction SOrder EID Block/unblock a thread before/after event EID
SAction ::= “block” | “unblock”
SOrder ::= “before” | “after”
SID ::= ‘S’ 〈 INTEGER 〉

BugSc ::= WL ENL XL SCL PREXPR The buggy scenario
PREXPR ::= SQEXPR | PREXPR “||” SQEXPR Events and workloads to execute in parallel
SQEXPR ::= EXPR | SQEXPR ‘*’ EXPR Events and workloads to execute in sequence
EXPR ::= WID | EID | XID | SID

Figure 6. Syntax of buggy scenario in RT. Some details are omitted for brevity.

〈(σ ,µ),WID〉 w−→ (σ ′,µ ′)

〈(σ ,µ,β),WID〉 → (σ ′,µ ′,β)
Execute a workload

∃t(matches(µ[t],EID)∧〈(σ ,µ),µ[t]〉 e−→ (σ ′,µ ′))

〈(σ ,µ,β),EID〉 → (σ ′,µ ′,β)
Execute an internal event

∃t(matches(µ[t],EID)∧ (β ′=β + t))

〈(σ ,µ,β),block before EID〉 → (σ ,µ,β ′)
Block be f ore

SID = block after EID ∃t(matches(µ[t],EID)∧〈(σ ,µ),µ[t]〉 e−→ (σ ′,µ ′)∧ (β ′=β + t))

〈(σ ,µ,β),EID∗SID〉 → (σ ′,µ ′,β ′)
Block a f ter

〈(σ ,µ,β),EX1〉 → (σ ′,µ ′,β ′) 〈(σ ′,µ ′,β ′),EX2〉 → (σ ′′,µ ′′,β ′′)

〈(σ ,µ,β),EX1||EX2〉 → (σ ′′,µ ′′,β ′′)
Execute in parallel(1)

〈(σ ,µ,β),EX2〉 → (σ ′,µ ′,β ′) 〈(σ ′,µ ′,β ′),EX1〉 → (σ ′′,µ ′′,β ′′)

〈(σ ,µ,β),EX1||EX2〉 → (σ ′′,µ ′′,β ′′)
Execute in parallel(2)

Figure 7. Operational Semantics of RT. Some rules are omitted for brevity.

• µ: a map from each thread to the next relevant internal
event to execute in the thread. Different threads might be
running in different processes in different nodes.
• β : a queue of blocked threads. A thread can be blocked

and unblocked by scheduling constraints (Figure 6).

We utilize the following definitions in the semantics.

• The transition function w−→ (〈(σ ,µ),WID〉 w−→ (σ ′,µ ′))
executes workload WID against the SUT, and modifies
the SUT state σ and µ appropriately.

• Similarly, the transition function e−→ (〈(σ ,µ),ev〉 e−→
(σ ′,µ ′)) executes internal event ev in the SUT, and mod-
ifies the SUT state σ and µ appropriately.
• matches(ev, EID) returns true if the context of event

ev matches that of EID given in the RT scenario.
• The function −/+ removes from/adds a thread to β .

3.2 RE: The Reproduction Engine
Given a potentially buggy scenario in RT, the reproduction
engine tries to create that scenario during system execu-
tion. It executes the specified workload, takes control over
the system execution to enforce the specified schedule of

system events, and also triggers or emulates specified ex-
ternal events (e.g., node crash and garbage collection). To
execute the given workload, RE invokes the different ex-
ecutables specified for the workload. Enforcing the given
schedule of events and emulating external events are not
as straightforward, and are explained in subsequent sections
(Sections 3.2.1 and 3.2.2, respectively).

3.2.1 Enforcing a specific event order
To enforce a specific order of events, RE first needs to
know when those events occur during execution. For this,
we instrument (add hooks to) the system binary so that
the hooks can notify the reproduction engine when relevant
events occur. For example, to know when a regionserver
starts splitting a node in HBase (event E1 in Figure 1), we
add a hook before the method ‘createNodeSplitting’.
The hook notifies RE when a regionserver is about to
execute the method. Similarly, to know when a callback
executes in the master in response to a region becom-
ing offline (event E4), we add a hook before the method
regionOffline. The hook notifies when the method is
going to be executed in the context of the execution of
AssignmentManager.nodeDeleted.

We target cloud systems written in Java for this work,
and use AspectJ [9] to instrument Java bytecode. Ap-
propriate instrumentation tools can be used for systems
written in other languages. For each event specified in a
given scenario, we automatically generate an aspect that
would notify the reproduction engine when that event oc-
curs. For example, Figure 8 shows the aspect that is
generated for event E4 in Figure 1. The aspect imports
necessary classes from the definition of E4. E4 indi-
cates that ‘regionOffline’ executes in the context of
‘AssignmentManager.nodeDeleted’. Thus, the gener-
ated aspect imports the ‘AssignmentManager’ class. The
pointcut p() captures what the tester had specified should
be present in the execution stack of E4. The DSL RT also
allows testers to specify the types of arguments for the ex-
ecuting method, and values for any of those arguments. We
incorporate the given argument information in the generated
aspect using the args construct in AspectJ. Since a scenario
typically has a few (less than 10 in our experiments (Sec-
tion 4)) events, we have to instrument only a few execution
points. The overhead due to instrumentation is thus low.

The code within the aspect generates other information
regarding the intercepted execution point, e.g., node ID,
thread ID, remote node ID and ports in case of network IO,
etc. During execution, the generated information regarding
the intercepted execution point is sent to RE. RE matches
the information against the event definitions in the given
buggy scenario to decide if the intercepted execution point
corresponds to one of the events in the scenario.

As the system under consideration executes, the aspects
notify the reproduction engine when a potentially relevant
event executes in a node in the system. The reproduction en-

import org.apache.hadoop.hbase.master.

AssignmentManager;

pointcut p() : execution (*

*. regionOffline (..)) &&

cflow(execution

(* AssignmentManager +.

nodeDeleted (..)));

before () : p(){

Context ctx = new Context(

thisJoinPoint);

... RE.order(ctx); ... }

Figure 8. Aspect generated for event E4 in Figure 1

gine runs as a separate process (likely on a different ma-
chine). The system nodes (with aspects in their binaries)
communicate with the engine via RPC. A system node sends
relevant information for an event to RE (RE.order(ctx)
in Figure 8). RE matches this information against the next
event specified in the buggy scenario. If there is a match
(e.g., the aspect p() in Figure 8 executes in master and the
sequence of events till E3 have already been observed for the
scenario in Figure 2), then RE allows the event execution to
proceed. Otherwise, if there is a match against an event later
in the schedule (e.g., p() in Figure 8 executes and events till
only E2 have been observed), then RE blocks the RPC call
from the node effectively blocking the node from execut-
ing the event. This is because the given scenario requires the
current event to execute only after other not-yet-encountered
events have executed. The current event would be allowed to
proceed after those other events have been encountered and
executed. If there is no match with the next event or any fu-
ture event, RE lets the intercepted event proceed as usual.

Sometimes the specified scenario might not be feasible.
An event E that is expected next in the scenario might not
show up during system execution. If RE does not observe
the next event within a pre-defined amount of time (e.g.,
20 minutes), it gives up on reproducing the given scenario.
But, if RE cannot reproduce a scenario, then it does not
necessarily mean that the scenario is infeasible. It might so
happen that a given event definition in the scenario matches
multiple system events, but a bug occurs only for some of
the system events that match. For example, let’s say that
event E3 in Figure 1 is defined as E3[node]=‘master’

and E3[stack]=‘NavigableMap.remove’

(and not E3[stack]=‘NavigableMap.remove

ServerShutdownHandler.process’). Thus, accord-
ing to the new definition of E3, any execution of
NavigableMap.remove in the master node would
match E3. If the reproduction engine orders an exe-
cution of NavigableMap.remove that is not in the
context of ServerShutdownHandler.process be-

fore E4 (Figure 1), then no bug might show up. When
RE does not reproduce the given buggy scenario, the
tester can refine the events in the scenario (e.g., add
ServerShutdownHandler.process to E3’s stack) in or-
der to help RE to better identify the system events involved
in the bug.

3.2.2 Emulating non-deterministic external events
The reproduction engine can also trigger or emulate non-
deterministic events that can occur in the execution envi-
ronment (e.g., garbage collection) or in the hardware on
which the system executes (e.g., node crash, network fail-
ures, disk errors, etc.). To trigger a garbage collection, RE
calls System.gc() that advises the Java runtime to per-
form garbage collection. To emulate a node crash, we kill
the process for the node. For network failures, we intercept
the network IO calls for communication between the nodes
or ports that we want to fail, and instead of letting the calls
execute as they normally would, we fail them with IO excep-
tions. We emulate disk errors similarly. The details of emu-
lating hardware failures have been described in our previous
work [17, 19, 20, 22].

3.3 RL: The Log Analyzer
In order to write and validate a scenario that could lead to a
bug, a tester needs to have a hunch regarding the conditions
that cause the bug. If the tester has no idea as to what leads
to the bug, then the tester can use logs from an erroneous
execution to get hints regarding the cause of the bug. Cloud
system developers often employ logging to record informa-
tion regarding an execution that they use for debugging in
case of errors. This is in fact how debugging is done in most
of the cloud systems industry. ReproLite augments this al-
ready prevailing debugging approach by enabling develop-
ers to quickly prototype and validate hunches that they form
from examining logs.

The log analyzer helps testers to process logs and com-
pare logs from different executions in various ways, and
also automatically generate scenarios in RT from a sequence
of log messages. A log message can have different com-
ponents: timestamp, file name, line number, class name,
method name, argument string describing partial execution
state, remote node, etc. RL enables a tester to extract a sub-
set of components from log messages. Testers can also stitch
together multiple logs according to the timestamps of their
log messages in order to obtain a global view of the exe-
cution. They can also find diff’s of logs from two different
executions (e.g., erroneous and correct executions) to under-
stand which of the differences between the two executions
could have caused the bug.

After examining and comparing logs using RL, testers
can narrow their focus to a subset of log messages that can
potentially reveal the cause of the bug (e.g., the log messages
in the diff of erroneous and correct executions). Given a se-
quence of such log messages (possibly from logs in multi-

ple nodes), RL can automatically generate a scenario in RT
that would enforce an execution in which those log messages
would execute in the order in the given sequence. For exam-
ple, Figure 3 shows the relevant log messages for HBASE-
6070 that a tester can find using the filtering and diff’ing
techniques described above. RL can automatically gener-
ate event definitions in RT from the given log messages as
shown in Figure 9.

For each relevant log message, RL parses the message,
and extracts different components out of it (e.g., file name,
line number, class and method names, argument string).
Since we target cloud systems written in Java, we target pop-
ular logging packages in Java (e.g., log4j and Java Logging).
Using the log message pattern provided in the system con-
figuration, we parse messages to extract their components.
For example, following is a log4j pattern in Cassandra that
can be used to parse log messages: %5p [%t] %dISO8601
%F:%C:%M (line %L) %m%n. The pattern specifies that
the first term in a log message is the log level (e.g., info,
debug, error, etc.), the second term is the thread name that
logged the message, the third term is the date in ISO8601
format, the fourth term is the file name, the class name, and
the method name, and the fifth term is the line number of
the statement that generated the message. In the end, there is
an arbitrary string that is provided as an argument to the log
statement.

RL generates appropriate event definitions from the
parsed relevant log messages, and generates a candidate sce-
nario in RT in which the events execute in the same order
as the respective log messages. For example, consider the
first log message in Figure 3. After parsing the log message
as described above, we find that the different components of
the message are: (i) SplitTransaction.java (file name),
(ii) 857 (line number), (iii) SplitTransaction (class
name), (iv) createNodeSplitting (method name), and (v)
regionserver ...in SPLITTING state (log statement
argument). We strip off substrings in the log statement ar-
gument that contain only numbers and replace them with
‘*’. The numbers often denote dynamic object IDs (e.g.,
5d755f81b0421a673223facdcb7bfecc in the above log
message) that change from execution to execution. Thus, we
cannot use these IDs to identify relevant points in a different
execution.

An event definition (as in E1 in Figure 9) can be automat-
ically generated from the message components. We assume
that we know the type of the node that generated a given log
message (e.g., master or regionserver in HBase). When
a node boots up, it is started as one of the possible types
for the system, and thus, we would know the type of a node
when it is booted up. The entire event definition is not pro-
vided for brevity. The other events in the figure are gener-
ated from the rest of the log messages in Figure 3. Given
event definitions for a sequence of log messages, a tester can
inspect the definitions and the buggy scenario, and possibly

bug.sc:

E1[node]=‘regionserver ’

E1[stack]=

‘org.apache.commons.logging.Log.*

SplitTransaction.createNodeSplitting:

857’

E2[node]=‘master ’

E2[stack]=

‘org.apache.commons.logging.Log.*

AssignmentManager.handleRegion: 699’

E2[args]=‘Handling transition=

RS_ZK_REGION_SPLITTING , server=

d2.nec -labs.com , *,*, region=*’

E3[node]=‘master ’

E3[stack]=

‘org.apache.commons.logging.Log.*

ServerShutdownHandler.process: 275’

E4[node]=‘master ’

E4[stack]=

‘org.apache.commons.logging.Log.*

AssignentManager.nodeDeleted: 1122’

Figure 9. Events in buggy scenario for HBASE-6070 from
relevant log messages (Figure 3)

update them based on her knowledge regarding the bug and
the system.

4. Evaluation
We have implemented ReproLite for cloud systems written
in Java. For a system under test, ReproLite provides executa-
bles that can be used as workload for reproducing bugs for
that system. For example, for Cassandra [3] (a popular dis-
tributed database), we provide scripts that can write data to
a given column family in a given keyspace, read data from
a given keyspace and column family, drop column family,
flush data to disk, etc. For each system event definition in a
RT scenario, ReproLite generates an AspectJ [9] aspect (as
explained in Section 3.2.1) that intercepts the given event
during execution. The aspects are woven into the given sys-
tem’s bytecode. As the instrumented system executes, its as-
pects intercept relevant events, and send information regard-
ing those events to RE (Section 3.2.1) via RPC. RE, which is
implemented in Java, decides whether to let the intercepted
event proceed or block the event according to the event order
in the scenario. External events like network and disk fail-
ures are also implemented using AspectJ. Their implemen-
tation is described in our previous work, Setsudo [19]. Fil-
tering, concatenation, and diff’ing of logs in RL are imple-
mented in Python. In all, ReproLite is approximately 4.5K
LOC of Java and 1K LOC of Python and shell scripts.

bug.sc:

W1=‘create -ks.sh test ’

W2=‘add -cf.sh test cf’

W3=‘write.sh 20 test cf’

W4=‘flush.sh’

W5=‘drop.sh cf’

W6=‘add -cf.sh test cf’

W7=‘read.sh test cf’

E2[stack]=‘ BufferedSegmentedFile.

getSegment ’

E3[stack]=‘File.delete ’

W1 * W2 * W3 * W4 *

(W5 * W6 * W7 || E3 * E2)

Figure 10. First attempt at buggy scenario for
CASSANDRA-1477

We have experimented ReproLite with two popular cloud
databases : Cassandra [3] and HBase [7]. We selected a set
of bugs from each system, and used ReproLite to reproduce
those bugs. We are interested in answering the following
questions: (i) how easy is it to express and validate potential
buggy scenarios in ReproLite and eventually find the sce-
nario that causes the bug?, (ii) is ReproLite efficient in repro-
ducing given scenarios?, and (iii) how often do log messages
contain the cause of a bug? Our evaluation tries to answer
these questions.

4.1 Expressing and validating scenarios in ReproLite
We started out with limited experience regarding the imple-
mentation of both Cassandra and HBase, but as we repro-
duced different bugs for these systems, we found that many
a time even if we could not come up with the right set of con-
ditions responsible for a bug in the first attempt, ReproLite
helped us to get closer to the cause of the bug by provid-
ing us with executions enforcing our initial conjectures that
we could inspect and learn from. Being able to quickly ex-
press our initial hypotheses and test them helped to follow
the right leads and eventually pinpoint the conditions for a
bug. We provide our debugging experience in more detail
for a couple of bugs in this section.

4.1.1 Reproducing CASSANDRA-1477
Cassandra-1477 [5] is a serious bug (classified as ‘blocker’)
in an older version of Cassandra that can result in loss of data
from the database. The bug occurs when a column family is
dropped and then added back to a keyspace. Before the col-
umn family is dropped, its data is written to disk as SSTable
files. The SSTable files are compacted if the number of files
is more than the pre-defined number at which compaction
should begin. If a SSTable file has been compacted along
with other SSTables into a new file, and there is no reference
in memory to that SSTable, then that SSTable file would be

bug.sc:

E1[stack]=‘ SSTableDeletingReference.

deleteOnCleanup ’

X1 = garbage collection ‘cnode ’

W1 * W2 * W3 * W4 *

(W5 * W6 * W7 ||

E1 * X1 * E3 * E2)

Figure 11. Second (and final) attempt at buggy scenario
for CASSANDRA-1477. Missing workload and event def-
initions are in Figure 10.

deleted eventually. If the file has not yet been deleted, but
the column family that it belonged to has been re-created
and added to the keyspace, then data written to the column
family can be written to that SSTable file. If the SSTable file
then gets deleted, all the data written to the column family
would be lost.

The report for CASSANDRA-1477 [5] describes two
different situations that can arise out of the workload that
we have described above (drop a column family from a
keyspace, then re-create it and add it back to the keyspace).
The second situation has been discussed as being trickier and
harder to reproduce, and this is what we aim to reproduce
using ReproLite. In fact, one of the developers conjectures
the conditions that could be leading to the bug. But, there is
no test case that reproduces the bug (the test case provided
reproduces the first situation that we do not consider here).

To reproduce the bug using ReproLite, we write down
the workload and the events that we are certain should ex-
ecute for the bug to occur. For example, from the discus-
sion of the bug and the error trace provided in the bug
report, we can infer that for the bug to occur, we need
a workload that drops a column family from a keyspace,
and re-creates and adds it back to the keyspace, and also
writes some data to it thereafter. Figure 10 shows a sce-
nario with such a workload. Before dropping the column
family, we add enough data to it so that its SSTables are
compacted. Also, from the exception trace provided in the
bug report, we know that there is a file not found exception
when executing BufferedSegmentedFile.getSegment.
Thus, we can conjecture that a File.delete event ex-
ecutes as BufferedSegmentedFile.getSegment begins
its execution. The deletion event deletes the file being ac-
cessed by BufferedSegmentedFile.getSegment result-
ing in the exception. We express our initial conjecture in
Figure 10.

When ReproLite enforces the scenario in Figure 10
during execution, we observe that event E2 (exe-
cution of BufferedSegmentedFile.getSegment)
occurs but not event E3 (file deletion). From the
execution logs and the source code of SSTable

bug.sc:

W1=‘create -table -cf.sh test cf’

W2=‘insert.sh 20 test cf’

W3=‘flush.sh test ’

W4=‘compact.sh test ’

E1[stack]=‘ SplitTransaction.

execute ’

E2[stack]=‘HRegion.

compactStores ’

E3[stack]=‘ CatalogJanitor.

cleanParent ’

W1 * W2 *

(W3 * W4 ||

E1 * E2 * E3 * E2 * E3)

Figure 12. Buggy scenario for HBASE-4799

(and related data structures), we can find out that
SSTableDeletingReference.deleteOnCleanup should
execute in order for the timer task that searches for and
deletes compacted SSTables without any references to
execute. Also, there should be garbage collection to remove
dead SSTable in-memory objects before the corresponding
SSTable files on disk can be deleted. After adding these
events to the scenario in Figure 10, we can reproduce the
bug. The final buggy scenario is given in Figure 11.

4.1.2 Reproducing HBASE-4799
HBase-4799 [4] is a critical HBase bug in which even after a
parent region has split into two daughter regions, the parent
region is not deleted from the system. This happens when the
splitting of the daughter regions takes a significant amount
of time, and when one of the daughter regions finishes its
splitting before the other. If both the daughter regions finish
their splitting around the same time, then their references
to the parent region are removed together, and the parent
region is then deleted from the system. But, if the references
to the parent region from one daughter region are removed
‘much’ before the references from the other daughter region,
the parent region is erroneously not deleted from the system.

From the description in the bug report, we can in-
fer that for the bug to happen, splitting of a region
should be in progress and the daughter regions should
have been created (i.e., SplitTransaction.execute

should have executed), the references to the parent from
one of the daughters should be deleted before the
other, and in between the deletion of the references,
CatalogJanitor.checkDaughter should execute. It took
us a couple of attempts to find out that the references to
the parent region are deleted in HRegion.compactStores.
Therefore, HRegion.compactStores for one of the daugh-
ter regions should finish before that for the other. The final
scenario that reproduces the bug is in Figure 12.

System Bug ID LOC of scenario No. of events
Cass 936 10 5
Cass 1353 11 3
Cass 1477 13 5
Cass 3547 6 2
Cass 3862 5 2
Cass 1160 4 3
HBase 3221 7 2
HBase 4395 11 3
HBase 4799 7 3
HBase 6070 8 5
HBase 6050 10 6

Table 1. Complexity of buggy scenarios in RT. Cass stands
for Cassandra.

System Bug Normal RE exc. RE
ID exc. time time ohd.

Cass 936 25.85 25.88 1
Cass 1353 9 14 1.6
Cass 1477 4 18 4.5
Cass 3547 145 152 1.05
Cass 3862 65.4 65.73 1
Cass 1160 1.339 1.39 1.03
HBase 3221 14 14 1
HBase 4395 9 1200 133
HBase 4799 10 188 18.8
HBase 6070 45 146 3.17
HBase 6050 44 307 6.98

Table 2. Execution overhead of RE when reproducing bugs

4.1.3 Complexity of buggy scenarios in RT
Table 1 shows the complexity of buggy scenarios for the
bugs from Cassandra and HBase. The first column is the
name of the system, and the second is the ID of the bug
in the Apache bug database [8]. The third column is the
lines of code (LOC) of the DSL RT for expressing the
buggy scenarios, and the fourth column is the number of
events (system or external) in the buggy scenarios. There
are only a few events (≤ 5) involved in each bug, and thus
each scenario is small with less than 15 lines of code. Thus,
writing scenarios in RT is generally quick for testers. Even if
it may take many iterations (≥ 10) to come up with scenarios
for some bugs, we found that the intermediate workloads and
schedules helped in understanding what extra constraints
were required to reproduce the given bugs.

4.2 Efficiency of ReproLite
For each reproduced bug, Table 2 shows the execution time
for executing the workload for that bug without any instru-
mentation by RE, and with instrumentation and enforcing of
the given scenario by RE. The third column in the table is the
execution time (in seconds) without using RE, and the fourth

System Bug Cause LOC of scenario
ID in logs? (gen. from log msgs)

Cass 936 Y 9
Cass 1353 N N.A.
Cass 1477 Y 12
Cass 3547 N N.A.
Cass 3862 Y 6
Cass 1160 Y 3
HBase 3221 Y 8
HBase 4395 N N.A.
HBase 4799 Y 23
HBase 6070 Y 14
HBase 6050 Y 10

Table 3. Automatically generating buggy scenarios from
execution logs

column is with using RE. The overhead (time with RE/time
without RE) is given in the last column. The last column is
in fact an over-approximation of the overhead of RE since
RE sometimes (e.g., HBase-4395 and HBase-4799) has to
wait for operation timeouts (which can be of the order of
a few minutes) in order to observe specified events in the
given scenario. Thus, even if the overhead of instrumenta-
tion might be less, the time taken when executing with RE
might still be a lot more because of the time spent by RE
waiting for timeouts. But, even if the overheads are a coarse
over-approximation, the values are close to 1 (meaning al-
most nil overhead) for half of the bugs. ReproLite has to
instrument to observe only the events in the given scenario
which are often just a few (less than 10 for our bugs). Hence
RE’s instrumentation overhead is low.

4.3 Generating buggy scenarios from execution logs
Table 3 shows if the correct buggy scenarios can be automat-
ically generated by RL from a set of log messages. The third
column in the table indicates if there exist a set of log mes-
sages that when executed in the order in which they appear in
the erroneous execution (possibly along with external events
but without any other ordering constraints on system events)
would result in the bug. If yes, then the last column gives
the size of the scenario in RT constructed for the bug from
the relevant log messages. We found that correct buggy sce-
narios could often (> 70% of the bugs) be constructed from
log messages. The RT scenarios from log messages (Sec-
tion 3.3) are small and comparable in size to the scenarios
manually written by a tester (Table 1).

In order to find the correct buggy scenario from log mes-
sages, we always started with a scenario that was generated
using log messages in the diff of the erroneous and correct
executions. We often had to include a few other log mes-
sages into the scenario in order to build the right context to
reach the messages already in the scenario. For example, in
HBase-4799 (Section 4.1.2), there is a log message (say L2)

that corresponds to event E2 (Figure 12) and another mes-
sage (say L3) that corresponds to E3. In the correct execu-
tion, we would see a sequence of log messages as L2 L2 L3

(along with many other log messages), and a sequence as
L2 L3 L2 L3 in the erroneous execution. Generating a sce-
nario from the diff of the two executions would generate a
scenario from L3 L2 L3. But, as we would see from the ex-
ecution that enforces this scenario that the second L3 cannot
be reached unless there is another L2. Thus, we would have
to include the first L2 in the buggy scenario. With increasing
understanding of the bug, we could also identify and remove
irrelevant log messages from the scenario.

5. Limitations and Threats to Validity
We discuss limitations of our work here.

Unexpected deadlock: The RT scenarios written by a
tester may result in unexpected system deadlock (e.g., if
a scenario is incorrect or if the event descriptions are not
fine-grained enough to correctly specify the execution points
where ReproLite should block). ReproLite waits for a spec-
ified amount of time for a scenario to be reproduced. If Re-
proLite cannot reproduce a scenario, the tester can refine the
scenario and run ReproLite again.

Expressiveness of the DSL: RT has its limitations, and
there are scenarios that cannot be expressed in it. For exam-
ple, we cannot express the specific number of times a method
should have executed in an event. Nevertheless, we found
RT in its current form to be expressive enough to quickly
prototype the scenarios for various bugs in real-world cloud
systems.

Choice of evaluated bugs: For evaluation, we selected
bugs with high priority (classification by developers) that we
found were hard to reproduce according to the description
and discussion in the bug reports. Since we looked at bugs
from Cassandra and HBase, ReproLite might not be enough
to reproduce bugs from other systems or for other bugs in
Cassandra and HBase. However, we believe that ReproLite
can be suitably extended (e.g., add suitable constructs to RT)
for other systems and classes of bugs.

6. Related work
The work that comes closest to ours is Concurrit [14]. Con-
currit enables testers to express a set of thread schedules in
a high-level language, and enforces those schedules during
execution. However, Concurrit focuses on reproducing con-
currency errors in a single process, whereas we focus on
system-level concurrency issues. ReproLite enables testers
to not only express thread schedules, but also orders of
events across different processes and external events like net-
work failures and garbage collection. Workloads (e.g., client
reads and writes from a distributed database) can also be in-
terleaved with system and external events. Moreover, Con-
currit relies on developers’ insights to reproduce a failure.
ReproLite provides assistance to understand the cause of a

failure from logs, and automatically creates a scenario in its
DSL from a sequence of log messages.

Most of the previous work [16, 24, 25, 27] on de-
bugging distributed systems has focused on building tools
that can capture and record enough information about non-
determinism in a system execution (e.g., races in shared vari-
able accesses, order in which network messages are sent and
received, OS signals, preemptions, etc.) that would allow
the tools to deterministically replay the execution later. The
more non-deterministic choices or events that are logged,
the higher are the chances to replay the exact execution ob-
served. But, logging involves a significant overhead, and sys-
tem developers and testers often do not want to incur this
overhead by aggressively logging all non-determinism dur-
ing execution. Thus, instead of increasing logging for a sys-
tem, ReproLite enables testers to easily and quickly express
hypotheses that they form from incomplete logs, and vali-
date those hypotheses with little execution overhead.

There has been a lot of work on providing high-level lan-
guages to enable testers to query logs during debugging [21],
and also to express distributed predicates and conditions to
test against [15, 23, 24]. In recon [21], testers can write
SQL-like queries to extract specific events out of logs (e.g.,
events involving specific nodes or communication channels).
The DSL in ReproLite (RT) also allows testers to iden-
tify events involving specific nodes or communication links.
Distributed predicates are complimentary to ReproLite– the
predicates can help testers to find subtle bugs during execu-
tion, and the testers can then use the execution logs to form
and validate conjectures regarding the cause of the bugs.

There have been static analysis based approaches to find-
ing the cause of an error using logs. For instance, by using
path- and context- sensitive program analysis and constraint
satisfiability solving, Sherlog [26] cross-checks logs from a
failed execution and source code to obtain a path slice for
a given bug. However, Sherlog is geared towards sequen-
tial programs. Adaptation of Sherlog to distributed systems
would be complimentary to ReproLite and enhance RL.

Black-box stress testing (e.g., HPs Load Runner [11] and
Unified Functional Testing [12], Apache JMeter [10], and
Selenium [13]) is popular in the industry for testing large-
scale systems. Stress testing involves repeated execution of
unit-tests or system-tests (e.g. 1,000 repeated runs) to find
bugs. Bugs in large-scale distributed systems often occur un-
der specific workloads and event orders that are uncommon.
Even if such a bug is found during stress testing, it would be
hard to reproduce the bug in subsequent executions. Repro-
Lite enables a tester to repeatedly reproduce a hard bug. The
RT scenario for the bug also serves as a regression test for
the bug.

Acknowledgments
We thank Yannis Smaragdakis and Christoph Reichenbach
for helpful comments and interesting discussions.

References
[1] Am.nodedeleted and ssh races creating problems for re-

gions under split. https://issues.apache.org/jira/

browse/HBASE-6070.

[2] Apache ZooKeeper. http://zookeeper.apache.org.

[3] Cassandra. http://cassandra.apache.org/.

[4] Catalog janitor logic bug causes region leackage. https:

//issues.apache.org/jira/browse/HBASE-4799.

[5] drop/recreate column family race condition. https://

issues.apache.org/jira/browse/CASSANDRA-1477.

[6] Hadoop. http://hadoop.apache.org/.

[7] HBase. http://hbase.apache.org/.

[8] System dashboard - ASF JIRA. https://issues.apache.
org/jira.

[9] The Aspectj Project. http://www.eclipse.org/

aspectj/.

[10] Apache jmeter. http://jmeter.apache.org/, July 2014.

[11] Hp - load runner. http://www8.hp.com/us/en/

software-solutions/loadrunner-load-testing/,
July 2014.

[12] Hp - unified functional testing. http://

www8.hp.com/us/en/software-solutions/

unified-functional-testing-automation/, July
2014.

[13] Selenium automates browsers. http://www.seleniumhq.

org/, July 2014.

[14] T. Elmas, J. Burnim, G. Necula, and K. Sen. Concurrit: A
domain specific language for reproducing concurrency bugs.
PLDI, 2013.

[15] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica.
Friday: Global comprehension for distributed replay. NSDI,
2007.

[16] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay debug-
ging for distributed applications. ATC, 2006.

[17] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein,
A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen, and
D. Borthakur. FATE and DESTINI: A framework for cloud
recovery testing. In NSDI, 2011.

[18] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-
anake, T. Do, J. Adityatama, K. J. Eliazar, A. Laksono, J. F.
Lukman, V. Martin, and A. D. Satria. What bugs live in the
cloud? a study of 3000+ issues in cloud systems. In ACM
Symposium on Cloud Computing (SOCC) (to appear), 2014.

[19] P. Joshi, M. Ganai, G. Balakrishnan, A. Gupta, and N. Pa-
pakonstantinou. Setsudo: Perturbation-based testing frame-
work for scalable distributed systems. TRIOS: Conference on
Timely Results in Operating Systems, 2013.

[20] P. Joshi, H. S. Gunawi, and K. Sen. PREFAIL: A pro-
grammable tool for multiple-failure injection. In OOPSLA,
pages 171–188. ACM, 2011.

[21] K. H. Lee, N. Sumner, X. Zhang, and P. Eugster. Unified
debugging of distributed systems with recon. DSN, 2011.

[22] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and
H. S. Gunawi. Samc: Semantic-aware model checking for fast

discovery of deep bugs in cloud systems. In 11th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI 14), pages 399–414, Broomfield, CO, Oct. 2014.
USENIX Association.

[23] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu,
M. F. Kaashoek, and Z. Zhang. D3s: Debugging deployed
distributed systems. NSDI, 2008.

[24] X. Liu, W. Lin, A. Pan, and Z. Zhang. Wids checker: Com-
bating bugs in distributed systems. NSDI, 2007.

[25] H. Thane and H. Hansson. Using deterministic replay for
debugging of distributed real-time systems. In Proceedings
of the Euromicro Conference on Real-time Systems, ECRTS,
2000.

[26] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupa-
thy. Sherlog: error diagnosis by connecting clues from run-
time logs. In ACM SIGARCH Computer Architecture News,
volume 38, pages 143–154. ACM, 2010.

[27] C. Zamfir, G. Altekar, and I. Stoica. Automating the debug-
ging of datacenter applications with adda. DSN, 2013.

