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Outline

2

Reproduce what bugs? Why 
lReproLite?
Currently

� black-box stress testing
– e.g. HPs Load Runner

� record-and-replay
– e.g. ASPLOS 2012 “Portend”

� programmable scheduler
– e.g. PLDI 2013 “Concurrit”

� static-analysis 
– e.g. ASPLOS 2010 “Sherlog”

Our Contribution
� Repeatedly reproduce 

� Do it in a lightweight way

� Provides assistance to understand 
the cause of a bug from logs

� Focus on system-level
concurrency issues
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Experiments
We experimented with using ReproLite to debug 11 bugs from
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Less than 15 lines of code

Almost nil for half of the bugs

70% percent of bug causes hidden in logs. 

Complexity

Instrumentation 
Overhead

Usefulness of 
Logs

Cassandra HBase

Motivation

How?

So what?
Cassandra bug 1477
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RE: Reproduction Engine
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Motivation
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Cloud Systems
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ReproLite’s Approach: 
3 Main Elements (RL, RT, RE)
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Reproduce what bugs? Why ReproLite?

� System-level bugs involving

– Concurrency

– System component interaction

– Environment non-determinism

� Benefits

– RT (DSL)

• Expressive for specifying bug scenarios in a deterministic 
manner

– RL (log analyzer)

• Provides assistance to understand the cause of a bug from 
logs

– RE (scheduler) 

• Repeatedly reproduce 

• lightweight
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Main new element:  

DSL for scenarios + scheduler



Structure
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RL: Parse, extract and diff buggy and non-
buggy logs

DEBUG [GC inspection] 

2014-10-22 16:23:29,160 

GCInspector.java (line 131) 

GC for ParNew: 5 ms, 
266519024 reclaimed leaving 

28339384 used; max is 

1263271936

Log level Thread name

Line 
number

Date & Time

File name Log message
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RE: Reproduction Engine
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RT: DSL for expressing bug scenario

10

Bug Scenario

Internal EventInternal Event External EventExternal Event WorkloadWorkload Scheduling ConstraintScheduling Constraint

Left and right run in parallel

Run in sequence

||||**

E1 * E2

E1 || E2
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Cassandra bug 1477
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Client Cassandra Node
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read
delete

FileNotFound

Exception

getSegment



DSL example

W1 = 'create-ks.sh test'

W2 = 'add-cf.sh test cf'

W3 = 'write.sh 20 test cf'

W4 = 'flush.sh'

W5 = 'drop.sh cf'

W6 = 'add-cf.sh test cf'

W7 = 'read.sh test cf'

E1 [ stack ]= 'File.delete‘

E2 [ stack ]= 'BufferedSegmentedFile.getSegment'

W1 * W2 * W3 * W4 * ( W5 * W6 * W7 || E1 * E2 )
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A workload given by 
bash script names 

and arguments

Stack traces to 
identify an internal 

event

Bug scenario



Example Walkthrough
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Users write code in DSL: First attempt

W1 = 'create-ks.sh test'

W2 = 'add-cf.sh test cf'

W3 = 'write.sh 20 test cf'

W4 = 'flush.sh'

W5 = 'drop.sh cf'

W6 = 'add-cf.sh test cf'

W7 = 'read.sh test cf'

E1 [ stack ]= 'File.delete‘

E2 [ stack ]= 'BufferedSegmentedFile.getSegment'

W1 * W2 * W3 * W4 * ( W5 * W6 * W7 || E1 * E2 )
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Extract file name and line number 
from each log message and diff
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Diff Result

+

nonbuggy-
proc.out

nonbuggy-
proc.out

buggy-proc.outbuggy-proc.out

+GCInspector.java (line 131)
+CassandraDaemon.java (line 84)
+(No such file 
/tmp/rp/cass/server1/data/ks/cf-e-1-Data.db 

+Cassandra.java (line 2761)

Diff

-

Garbage collection 

(gc): reclaim 

memory objects 

that are no longer 
used

Log messages related to 
FileNotFound Exception



Second attempt
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Client Cassandra Node

create

delete

recreate

read
delete

FileNotFound

Exception

getSegment

gc

W1 * W2 * W3 * W4 * ( W5 * W6 * W7 || X1 * E1 * E2 )

X1 = garbage collection 'cnode'

An external event 
given by action 

and node ID



Rely on logs and source code 
whenever possible
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buggy-proc.out SSTableReader.java



Final attempt
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Client Cassandra Node

create

delete

recreate

read
delete

FileNotFound

Exception

getSegment

gc

W1 * W2 * W3 * W4 * ( W5 * W6 * W7 || E3 * X1 * E1 * E2 )

deleteOnCleanUp

E3 [ stack ]= 'SSTableDeletingReference.deleteOnCleanup’



How? (Implementation)
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Implementation
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instrumented instrumented instrumented
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So What? (Experiments)
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Experiments

We experimented with using ReproLite to debug 11 bugs from

23

<=6  events involved in each bug

0~132, close to 0 for half of the bugs

70% percent of bug causes hidden in logs. 

Complexity

Performance 
Overhead

Usefulness of 
Logs

Cassandra HBase



Conclusion
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Users write code in DSL: Final attempt
W1 = 'create-ks.sh test'

W2 = 'add-cf.sh test cf'

W3 = 'write.sh 20 test cf'

W4 = 'flush.sh'

W5 = 'drop.sh cf'

W6 = 'add-cf.sh test cf'

W7 = 'read.sh test cf'

X1 = garbage collection 'cnode'

E1 [ stack ]= 'File.delete‘

E2 [ stack ]= 'BufferedSegmentedFile.getSegment'

E3 [ stack ]= 'SSTableDeletingReference.deleteOnCleanup'

W1 * W2 * W3 * W4 * ( W5 * W6 * W7 || E3 * X1 * E1 * E2 )

16

High-level language 

specifies bug scenario

Experiments

We experimented with using ReproLite to debug 11 bugs from
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Less than 15 lines of code

Almost nil for half of the bugs

70% percent of bug causes hidden in logs. 

Complexity

Instrumentation 
Overhead

Usefulness of 
Logs

Cassandra HBase
Illustrated benefits with 11 

hard system bugs

RE: Reproduction Engine
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Tool enforces scheduling 

in distributed environment



Thanks
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