
ReproLite :

A Lightweight Tool to Quickly
Reproduce Hard System Bugs

1

Kaituo Li (U. Massachusetts, Amherst)
Pallavi Joshi (NEC Labs America)
Aarti Gupta (NEC Labs America)

Malay K. Ganai (NEC Labs America)

Outline

2

Reproduce what bugs? Why
lReproLite?
Currently

� black-box stress testing
– e.g. HPs Load Runner

� record-and-replay
– e.g. ASPLOS 2012 “Portend”

� programmable scheduler
– e.g. PLDI 2013 “Concurrit”

� static-analysis
– e.g. ASPLOS 2010 “Sherlog”

Our Contribution
� Repeatedly reproduce

� Do it in a lightweight way

� Provides assistance to understand
the cause of a bug from logs

� Focus on system-level
concurrency issues

5

Experiments
We experimented with using ReproLite to debug 11 bugs from

19

Less than 15 lines of code

Almost nil for half of the bugs

70% percent of bug causes hidden in logs.

Complexity

Instrumentation
Overhead

Usefulness of
Logs

Cassandra HBase

Motivation

How?

So what?
Cassandra bug 1477

9

Client Cassandra Node

create

delete

recreate

read

create

mark deleted

create

read

start T2

T3

delete

T1

T2

FileNotFound

Exception
Example Walkthrough

RE: Reproduction Engine

9

Internal
Event

Internal
Event

Internal Event

Process

Process

Process

X
External
Event

X

External events: cause them to happen

Internal events: wait for them

Structure

Motivation

3

Cloud Systems

4

Node 1
Process

1

Node 3

Disk 3

Process

3

Node 2
Process

2

Disk 1

Disk 2

Client1
Process

Client2

Process

ReproLite’s Approach:
3 Main Elements (RL, RT, RE)

5

RT (bug

scenario in

DSL)

RL

(log

analyzer)

RE
(reproduction

engine or

scheduler)

Cloud

System

Observe

Events

Control

events

Reproduce what bugs? Why ReproLite?

� System-level bugs involving

– Concurrency

– System component interaction

– Environment non-determinism

� Benefits

– RT (DSL)

• Expressive for specifying bug scenarios in a deterministic
manner

– RL (log analyzer)

• Provides assistance to understand the cause of a bug from
logs

– RE (scheduler)

• Repeatedly reproduce

• lightweight
6

Main new element:

DSL for scenarios + scheduler

Structure

7

RL: Parse, extract and diff buggy and non-
buggy logs

DEBUG [GC inspection]

2014-10-22 16:23:29,160

GCInspector.java (line 131)

GC for ParNew: 5 ms,
266519024 reclaimed leaving

28339384 used; max is

1263271936

Log level Thread name

Line
number

Date & Time

File name Log message

8

RE: Reproduction Engine

9

Internal

Event

Internal

Event

Internal Event

Process

Process

Process

X
External

Event

X

RE control external events:

cause them to happen

RE observe internal events:

wait for them to happen

RT: DSL for expressing bug scenario

10

Bug Scenario

Internal EventInternal Event External EventExternal Event WorkloadWorkload Scheduling ConstraintScheduling Constraint

Left and right run in parallel

Run in sequence

||||**

E1 * E2

E1 || E2

11

Cassandra

Node

Node

Node

Node

Node

Client

Disk

Disk

Disk
Disk

Disk

Cassandra bug 1477

12

Client Cassandra Node

create

delete

recreate

read
delete

FileNotFound

Exception

getSegment

DSL example

W1 = 'create-ks.sh test'

W2 = 'add-cf.sh test cf'

W3 = 'write.sh 20 test cf'

W4 = 'flush.sh'

W5 = 'drop.sh cf'

W6 = 'add-cf.sh test cf'

W7 = 'read.sh test cf'

E1 [stack]= 'File.delete‘

E2 [stack]= 'BufferedSegmentedFile.getSegment'

W1 * W2 * W3 * W4 * (W5 * W6 * W7 || E1 * E2)

13

A workload given by
bash script names

and arguments

Stack traces to
identify an internal

event

Bug scenario

Example Walkthrough

14

Users write code in DSL: First attempt

W1 = 'create-ks.sh test'

W2 = 'add-cf.sh test cf'

W3 = 'write.sh 20 test cf'

W4 = 'flush.sh'

W5 = 'drop.sh cf'

W6 = 'add-cf.sh test cf'

W7 = 'read.sh test cf'

E1 [stack]= 'File.delete‘

E2 [stack]= 'BufferedSegmentedFile.getSegment'

W1 * W2 * W3 * W4 * (W5 * W6 * W7 || E1 * E2)

15

Extract file name and line number
from each log message and diff

16

Diff Result

+

nonbuggy-
proc.out

nonbuggy-
proc.out

buggy-proc.outbuggy-proc.out

+GCInspector.java (line 131)
+CassandraDaemon.java (line 84)
+(No such file
/tmp/rp/cass/server1/data/ks/cf-e-1-Data.db

+Cassandra.java (line 2761)

Diff

-

Garbage collection

(gc): reclaim

memory objects

that are no longer
used

Log messages related to
FileNotFound Exception

Second attempt

17

Client Cassandra Node

create

delete

recreate

read
delete

FileNotFound

Exception

getSegment

gc

W1 * W2 * W3 * W4 * (W5 * W6 * W7 || X1 * E1 * E2)

X1 = garbage collection 'cnode'

An external event
given by action

and node ID

Rely on logs and source code
whenever possible

18

buggy-proc.out SSTableReader.java

Final attempt

19

Client Cassandra Node

create

delete

recreate

read
delete

FileNotFound

Exception

getSegment

gc

W1 * W2 * W3 * W4 * (W5 * W6 * W7 || E3 * X1 * E1 * E2)

deleteOnCleanUp

E3 [stack]= 'SSTableDeletingReference.deleteOnCleanup’

How? (Implementation)

20

Implementation

21

instrumented instrumented instrumented

…Node NodeNode

System Under Test

RT

RE

Workload

Executor

Schedule

Monitor

External Events Emulator

Workload
RL: Filter,

concatenate,
diff logs

Relevant Internal
events

Schedules &
external events

aspects

Event order

RPC

AspectJ
Python

Bash

Java

So What? (Experiments)

22

Experiments

We experimented with using ReproLite to debug 11 bugs from

23

<=6 events involved in each bug

0~132, close to 0 for half of the bugs

70% percent of bug causes hidden in logs.

Complexity

Performance
Overhead

Usefulness of
Logs

Cassandra HBase

Conclusion

24

Users write code in DSL: Final attempt
W1 = 'create-ks.sh test'

W2 = 'add-cf.sh test cf'

W3 = 'write.sh 20 test cf'

W4 = 'flush.sh'

W5 = 'drop.sh cf'

W6 = 'add-cf.sh test cf'

W7 = 'read.sh test cf'

X1 = garbage collection 'cnode'

E1 [stack]= 'File.delete‘

E2 [stack]= 'BufferedSegmentedFile.getSegment'

E3 [stack]= 'SSTableDeletingReference.deleteOnCleanup'

W1 * W2 * W3 * W4 * (W5 * W6 * W7 || E3 * X1 * E1 * E2)

16

High-level language

specifies bug scenario

Experiments

We experimented with using ReproLite to debug 11 bugs from

18

Less than 15 lines of code

Almost nil for half of the bugs

70% percent of bug causes hidden in logs.

Complexity

Instrumentation
Overhead

Usefulness of
Logs

Cassandra HBase
Illustrated benefits with 11

hard system bugs

RE: Reproduction Engine

8

Internal Event

Internal Event

Internal Event

Process

Process

Process

X
External

Event

X

Tool enforces scheduling

in distributed environment

Thanks

25

