Residual Investigation:
Predictive and Precise Bug Detection

KAITUO L|, University of Massachusetts, Amherst, USA

CHRISTOPH REICHENBACH, Goethe University Frankfurt, Germany
CHRISTOPH CSALLNE R, University of Texas at Arlington, USA
YANNIS SMARAG DAK|S, University of Athens, Greece

We introduce the concept of “residual investigation” for program analysis. A residual investigation is a dynamic check
installed as a result of running a static analysis that reports a possible program error. The purpose is to observe conditions
that indicate whether the statically predicted program fault is likely to be realizable and relevant. The key feature of a
residual investigation is that it has to be much more precise (i.e., with fewer false warnings) than the static analysis alone,
yet significantly more general (i.e., reporting more errors) than the dynamic tests in the program’s test suite that are pertinent
to the statically reported error. That is, good residual investigations encode dynamic conditions that, when considered in
conjunction with the static error report, increase confidence in the existence or severity of an error without needing to
directly observe a fault resulting from the error.

We enhance the static analyzer FindBugs with several residual investigations, appropriately tuned to the static error
patterns in FindBugs, and apply it to 9 large open-source systems and their native test suites. The result is an analysis with a
low occurrence of false warnings (“false positives”) while reporting several actual errors that would not have been detected
by mere execution of a program’s test suite.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging — debugging aids; B.8.1 [Per-
formance and Reliability]: Reliability, Testing, and Fault-Tolerance

General Terms: Design, Reliability, Verification
Additional Key Words and Phrases: False warnings, existing test cases, RFBI

ACM Reference Format:

Kaituo Li, Christoph Reichenbach, Christoph Csallner, and Yannis Smaragdakis, 2013. Residual Investigation: Predictive
and Precise Bug Detection. ACM Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 29 pages.

DOT : http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION AND MOTIVATION

False error reports are the bane of automatic bug detection—this experience is perhaps the most
often-reported in the program analysis research literature [Musuvathi and Engler 2003; Zitser et al.
2004; Wagner et al. 2005; Rutar et al. 2004; Ayewah and Pugh 2010]. Programmers are quickly
frustrated and much less likely to trust an automatic tool if they observe that reported errors are often
not real errors, or are largely irrelevant in the given context. This is in contrast to error detection
at early stages of program development, where guarantees of detecting all errors of a certain class
(e.g., type soundness guarantees) are desirable. Programmers typically welcome conservative sanity
checking while the code is actively being developed, but prefer later warnings (which have a high

Authors’ addresses: K. Li, Computer Science Department, University of Massachusetts, Amherst, MA 01003, USA; C. Re-
ichenbach, Department of Informatics and Mathematics, Goethe-University Frankfurt, 60054 Frankfurt am Main, Germany;
C. Csallner, Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019,
USA; Y. Smaragdakis, Department of Informatics, University of Athens, Athens 15784, Greece.

This is a revised and extended version of [Li et al. 2012] which was presented at ISSTA 2012 and received an ACM SIGSOFT
Distinguished Paper Award.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions @acm.org.

© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00

DOT : http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 K. Li et al.

cost of investigation) to be issued only when there is high confidence that the error is real, even at
the expense of possibly missing errors.

The need to reduce false or low-value warnings raises difficulties especially for static tools, which,
by nature, overapproximate program behavior. This has led researchers to devise combinations of
static analyses and dynamic observation of faults (e.g., [Csallner and Smaragdakis 2005; 2006;
Godefroid et al. 2005; Cadar and Engler 2005; Tomb et al. 2007; Tillmann and de Halleux 2008;
Islam and Csallner 2014]) in order to achieve higher certainty than purely static approaches.

In this article we identify and present a new kind of combination of static and dynamic analyses
that we term residual investigation. A residual investigation is a dynamic analysis that serves as the
run-time agent of a static analysis. Its purpose is to determine with higher certainty whether the error
identified by the static analysis is likely true. In other words, one can see the dynamic analysis as the
“residual” of the static analysis at a subsequent stage: that of program execution. The distinguishing
feature of a residual investigation, compared to past static-dynamic combinations, is that the residual
investigation does not intend to report the error only if it actually occurs, but to identify general
conditions that reinforce the statically detected error. That is, a residual investigation is a predictive
dynamic analysis, predicting errors in executions not actually observed. The predictive nature of
residual investigation is a significant advantage in practice: high-covering test inputs are hard to
produce for complex programs.

Consider as an example the “equal objects must have equal hashcodes” analysis (codenamed HE)
in the FindBugs static error detector for Java [Hovemeyer and Pugh 2004a; 2007; Ayewah and Pugh
2010]. The HE analysis emits a warning whenever a class overrides the method equals (Object)
(originally defined in the Object class, the ancestor of all Java classes) without overriding the
hashCode () method (or vice versa). The idea of the analysis is that the hash code value of an object
should serve as an equality signature, so a class should not give a new meaning to equality without
updating the meaning of hashCode (). An actual fault may occur if, e.g., two objects with distinct
hash code values are equal as far as the equals method is concerned, and are used in the same hash
table. The programmer may validly object to the error warning, however: objects of this particular
class may never be used in hash tables in the current program. Our residual investigation consists
of determining whether (during the execution of the usual test suite of the program) objects of the
suspect class are ever used inside a hash table data structure, or otherwise have their hashCode
method ever invoked. (The former is a strong indication of an error, the latter a slightly weaker one.)
Note that this will likely not cause a failure of the current test execution: all objects inserted in the
hash table may have distinct hash code values, or object identity in the hash table may not matter
for the end-to-end program correctness. Yet, the fact that objects of a suspect type are used in a
suspicious way is a very strong indication that the program will likely exhibit a fault for different
inputs. In this way the residual investigation is a predictive dynamic analysis: it is both more general
than mere testing and more precise than static analysis.

We have designed and implemented residual investigations for several of the static analyses/bug
patterns in the FindBugs system. The result is a practical static-dynamic analysis prototype tool,
RFBI (for Residual FindBugs Investigator). Our implementation uses standard techniques for dy-
namic introspection and code interposition, such as bytecode rewriting and customized Aspect]
aspects [Kiczales et al. 2001]. The addition of extra analyses is typically hindered only by engineer-
ing (i.e., implementation) overheads. Designing the residual investigation to complement a specific
static pattern requires some thought, but it is typically quite feasible, by following the residual in-
vestigation guidelines outlined earlier: the analysis should be significantly more general than mere
testing while also offering a strong indication that the statically predicted fault may indeed occur.

We believe that the ability to easily define such analyses is testament to the value of the concept
of residual investigation. Predictive dynamic analyses are usually hard to invent. To our knowledge,
there are only a small number of predictive dynamic analyses that have appeared in the research
literature. (A standard example of a predictive dynamic analysis is the Eraser race detection algo-
rithm [Savage et al. 1997]: its analysis predicts races based on inconsistent locking, even when no
races have appeared in the observed execution.) In contrast, we defined several predictive analyses

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Residual Investigation: Predictive and Precise Bug Detection A:3

in a brief period of time, by merely examining the FindBugs list of bug patterns under the lens of
residual investigation.

The present article revises, generalizes, and extends the original conference publication on resid-
ual investigation [Li et al. 2012]. Thus, we integrate the original definition and presentation of
residual investigation analyses in RFBI, but our presentation also reflects a broader perspective on
how residual investigation can apply to different contexts, the enabling factors and limitations of the
approach, and more.

In summary, the main contributions of this work are:

— We introduce residual investigation as a general concept and illustrate its principles.

— We implement residual investigations for several of the most common analyses in the FindBugs
system, such as “cloneable not implemented correctly”, “dropped exception”, “read return should
be checked”, and several more. This yields a concrete result of our work, in the form of the
Residual FindBugs Investigator (RFBI) tool.

— We validate our expectation that the resulting analyses are useful by applying them to 9 open-
source applications (including large systems, such as JBoss, Tomcat, NetBeans, and more) using
their native test suites. We find that residual investigation produces numerous (31) warnings that
do not correspond to test suite failures and are overwhelmingly bugs.

— We discuss the applicability of residual investigation to several other static analyses in the litera-
ture. These include race detection, SQL injection analyses, and other pattern-based code analyses
in FindBugs. We also discuss how the quality of the test suite affects the applicability of residual
investigation.

2. RESIDUAL INVESTIGATION

Residual investigation is a simple concept—it is a vehicle that facilitates communication rather than
a technical construction with a strict definition. We next discuss its features and present the example
analyses we have defined.

2.1. Background and General Concept

We consider a dynamic check that is tied to a static analysis to be a residual investigation if it
satisfies the informal conditions outlined in Section 1:

— The check has to identify with very high confidence that the statically predicted behavior (typi-
cally a fault') is valid and relevant for actual program executions. A residual investigation should
substantially reduce the number of false (or low-value) error reports of the static analysis.

— The analysis has to be predictive: it should be generalizing significantly over the observed execu-
tion. A residual investigation should recognize highly suspicious behaviors, not just executions
with faults. This is a key requirement, since it is easier to have a test case to expose suspicious
behaviors than to have a test case to actually cause faults.

A bit more systematically, we can define the following predicates over a program p:

— Bp(b), for “p has bug b”, i.e., the program text contains an error, b, of a kind we are concerned
with (e.g., class overrides equals but not hashcode) and there is some execution e, of p for
which this error leads to a fault.

— Sp(b), for “p induces a static error report on bug b”, i.e., the program text contains a possible
error that the static analysis reports.

1The computing literature is remarkably inconsistent in the use of the terms “error”, “fault”, “failure”, etc. In plain English
“error” and “fault” are dictionary synonyms. Mainstream Software Engineering books offer contradicting definitions (some
treat an “error” as the cause and a “fault” as the observed symptom, most do the opposite). Standard systems parlance refers
indiscriminately to “bus errors” and “segmentation faults”, both of which are quite similar program failures. In this article
we try to consistently treat “error” (as well as “bug” and “defect”) as the cause (in the program text) of unexpected state
deviation, and “fault” as the dynamic occurrence that exhibits the consequences of an error. That is we think of programming
errors, and execution faults. It should also be possible for the reader to treat the two terms as synonyms.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A4 K. Li et al.

Fig. 1. The goal of residual investigation (R,) of a program p is to provide a filter for the static bug warnings (S}), such
that R, and S, combined (i.e., the intersection of R, and S),) better approximates the program’s set of true bugs (B)p) than
static analysis alone.

— Tp(b), for “p causes a test case fault due to bug b”, when executed with p’s test suite.
— R, (b), for “p triggers the residual investigation (dynamic) check” (associated with the static
report for bug b), when executed with p’s test suite.

Although we typically use the term “residual investigation” for the dynamic analysis, the error
reporting process includes the static analysis. That is, a residual investigation issues a reinforced
warning in case the static analysis predicted an error and the dynamic analysis confirms it, i.e., in
case Sp(b) A R, (D).

We assume that the dynamic testing is sound for the execution it examines.? Thus, we have:

Vp,b: T, (b) = B,(b)
The requirements for having a valid and useful residual investigation then become:
(1) The static analysis is unsound (i.e., some warnings are false):
3Ip,b: Sp(b) A ~By(b)

(As discussed in the introduction, this assumption is true for most static analysis systems, as they
produce false warnings.)

(2) The dynamic testing (of a program’s test suite) is incomplete (i.e., bugs are missed by testing):
3p,b: By(b) A —T,(b)

(Again, the undecidability of non-trivial program properties combined with the soundness of
testing implies testing is incomplete.)

(3) The residual investigation should be an appropriate bridge for the gap between the static analysis
and the bug (see also Figure 1):

Vp,b : B,(b) approximately iff S, (b) A R, (b)

This is the only informal notion in the above. It is practically impossible to have exact equiva-
lence for realistic programs and error conditions, since R, (b) examines a finite number of pro-
gram executions. Note that (approximate) equivalence means both that .S,(b) A R, (b) (likely)
implies a bug b exists and that, if there is a bug b, S, (b) A R,,(b) will (likely) be true. In practice,
we place a much greater weight on the former direction of the implication. That is, we are happy
to give up on completeness (which is largely unattainable anyway) to achieve (near-)soundness
of error warnings.

The question then becomes: how does one identify a good residual investigation? We have used
some standard steps:

— Start with the static analysis and identify under what conditions it is inaccurate (produces false
positives) or irrelevant (produces true but low-value positives).

2We view all analyses as bug detectors, not as correctness provers. Therefore soundness means that warning about an error
implies it is a true error, and completeness means that having an error implies it will be reported. For a correctness prover
the two notions would be exactly inverse.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Residual Investigation: Predictive and Precise Bug Detection A5

— Estimate how likely these conditions can be. In other words, is this static analysis likely to yield
error reports that the programmer will object to, seeing them as false or of low-value?

— If so, is there a concise set of dynamic information (other than a simple fault) that can invalidate
the programmer’s objections? That is, can we determine based on observable dynamic data if the
likely concerns of a programmer to the static warnings do not apply?

Recognizing such “likely objections of the programmer” has been the key part in our design.
With this approach we proceeded to identify residual investigations for seven static analyses in the
FindBugs system, including some of the analyses that issue the most common FindBugs warnings.

2.2. Catalog of Analyses

We next present the residual investigations defined in our RFBI (Residual FindBugs Investigator)
tool, each tuned to a static analysis in the FindBugs system. We list each analysis (uniquely de-
scribed by the corresponding FindBugs identifier) together with the likely user objections we iden-
tified and a description of clues that dynamic analysis can give us to counter such objections. To
simplify the presentation, we detail our implementation at the same time.

2.2.1. Bad Covariant Definition of Equals (Eq). The equals (Object) method is defined in the
Object class (java.lang.Object) and can be overridden by any Java class to supply a user-
defined version of object value equality. A common mistake is that programmers write equals
methods that accept a parameter of type other than Object. The typical case is that of a covariant
re-definition of equals, where the parameter is a subtype of Object, as in the example class
Pixel:

class Pixel {
int x;
int y;
int intensity;

boolean equals (Pixel p2)
{ return x==p2.x && y==p2.y; }

This equals method does not override the equals method in Ob ject but instead overloads it for
arguments of the appropriate, more specific, static type. As a result, unexpected behavior will occur
at runtime, especially when an object of the class type is entered in a Collections-based data structure
(e.g., set, List). For example, if one of the instances of Pixel is put into an instance of a class
implementing interface Container, then when the equals method is needed, Object .equals ()
will get invoked at runtime, not the version defined in Pixel. One of the common instances of this
scenario involves invoking the Container.contains (Object) method. A common skeleton for
Container.contains (Object) is:

boolean contains (Object newObj) {
for (Object obj : this) {
if (obj.equals (newObij))
return true;

}

return false;

Here, contains (Object) will use Object.equals, which does not perform an appropriate
comparison: it compares references, not values. Therefore, objects of type Pixel are not compared
in the way that was likely intended.

Possible programmer objections to static warnings. FindBugs issues an error report for each occur-
rence of a covariant definition of equals. Although the covariant definition of equals is very likely
an error, it is also possible that no error will ever arise in the program. This may be an accidental

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYYY.

A:6 K. Li et al.

artifact of the program structure, or even a result of the programmer’s calculation that for objects
of the suspect class the dynamic type will always be equal to the static type, for every invocation
of equals. For instance, the redefined equals (Pixel) method may be used only inside class
Pixel, with arguments that are always instances of subtypes of Pixel, and the programmer may
have chosen the covariant definition because it is more appropriate and convenient (e.g., obviates
the need for casts).

Dynamic clues that reinforce static warnings. Our residual investigation consists of simply checking
whether the ancestral equals method, Object .equals (Object), is called on an instance of a
class that has a covariant definition of equals. The implementation first enters suspect classes into
a blacklist and then instruments all call sites of Object .equals (Object) to check whether the
dynamic type of the receiver object is in the blacklist.

Implementation. We transform the application bytecode, using the ASM Java bytecode engineer-
ing library. Generally, for all our analyses, we instrument incrementally (i.e., when classes are
loaded), except in applications that perform their own bytecode rewriting which may conflict with
load-time instrumentation. In the latter case, we pre-instrument the entire code base in advance
(build time).

2.2.2. Cloneable Not Implemented Correctly (CN). Java is a language without direct memory ac-
cess, hence generic object copying is done only via the convention of supplying a clone () method
and implementing the Cloneable interface. Additionally, the clone () method has to return an
object of the right dynamic type: the dynamic type of the returned object should be the same as the
dynamic type of the receiver of the clone method and not the (super)class in which the executed
method clone happened to be defined. This is supported via a user convention: any definition of
clone () in a class s has to call super.clone() (i.e., the corresponding method in S’s super-
class). The end result is that the (special) clone () method in the java.lang.Object class is
called, which always produces an object of the right dynamic type.

Possible programmer objections to static warnings. FindBugs statically detects violations of the
above convention and reports an error whenever a class implements the Cloneable interface, but
does not directly invoke super.clone () inits clone method (typically because it merely creates a
new object by calling a constructor). Although this condition may at first appear to be quite accurate,
in practice it often results in false error reports because the static analysis is not inter-procedural. The
clone method may actually call super.clone () by means of invoking a different intermediate
method that calls super.clone () and returns the resulting object.

Dynamic clues that reinforce static warnings. A dynamic check that determines whether a clone
method definition is correct consists of calling clone on a subclass of the suspect class S and
checking the return type (e.g., by casting and possibly receiving a ClassCastException). Our
residual investigation introduces a fresh subclass C of s defined and used (in a minimal test case)
via the general pattern:

class C extends S {
public Object clone ()
{ return (C) super.clone(); 1}

((new C()).clone()) // Exception

If s does not have a no-argument constructor, we statically replicate in C all constructors with
arguments and dynamically propagate the actual values of arguments used for construction of S
objects, as observed at runtime.

If the test case results in a ClassCastException then the definition of clone in class S is
indeed violating convention. Conversely, if S implements the clone convention correctly (i.e., in-
directly calls super.clone ()) no exception is thrown. This test code is executed the first time an
object of class s is instantiated. In this way, if class s does not get used at all in the current test suite,
no error is reported.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Residual Investigation: Predictive and Precise Bug Detection A7

The above residual investigation provides a very strong indication of a problem that will appear
in an actual execution of the program, without needing to observe the problem itself. Indeed, the
current version of the program may not even have any subclasses of S, but a serious error is lurking
for future extensions.

Implementation. Our implementation of this analysis uses Aspect] to introduce the extra class and
code. In the case of complex constructors, we retrieve those with Java reflection and use Aspect]’s
constructor joinpoints instead of generating customized calls. A subtle point is that if the superclass,
S, is declared £inal or only has private constructors, the residual investigation does not apply. This
is appropriate, since the absence of any externally visible constructor suggests this class is not to be
subclassed. Similarly, the generated code needs to be in the same package as the original class s, in
order to be able to access package-protected constructors.

2.2.3. Dropped Exception (DE). Java has checked exceptions: any exception that may be thrown
by a method needs to either be caught or declared to be thrown in the method’s signature, so that
the same obligation is transferred to method callers. To circumvent this static check, programmers
may catch an exception and “drop it on the floor”, i.e., leave empty the catch partina try-catch
block. FindBugs statically detects dropped exceptions and reports them.

Possible programmer objections to static warnings. Detecting all dropped exceptions may be a good
practice, but is also likely to frustrate the programmer or to be considered a low-priority error report.
After all, the type system has already performed a check for exceptions and the programmer has
explicitly disabled that check by dropping the exception. The programmer may be legitimately
certain that the exception will never be thrown in the given setting (a common case—especially for
I/O classes—is that of a general method that may indeed throw an exception being overridden by
an implementation that never does).

Dynamic clues that reinforce static warnings. Our residual investigation consists of examining
which methods end up being dynamically invoked in the suspect code block and watching whether
the same methods ever throw the dropped exception when called from anywhere in the program.
For instance, the following code snippet shows a method methl whose catch block is empty. In
the try block of methi, first fool is executed, then foo2 (possibly called from fool), then foo3,
and so on:

void methl () {
try {
fool();
//Call-graph fool()->foo2()->...->fooN()
} catch (XException e) { } //empty

The residual investigation will report an error if there is any other method, methX, calling some
fooi where fooi throws an XException during that invocation (regardless of whether that excep-
tion is handled or not):

void methX {

try {
//Call-graph ...->fooN()->...
} catch (XException e) {

// handled
}

In this case the user should be made aware of the possible threat. If foos can indeed throw an
exception, it is likely to throw it in any calling context. By locating the offending instance, we prove
to programmers that the exception can occur. Although the warning may still be invalid, this is a
much less likely case than in the purely static analysis.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 K. Li et al.

Implementation. The implementation of this residual investigation uses both the ASM library for
bytecode transformation and Aspect], for ease of manipulation.

We execute the program’s test suite twice. During the first pass, we instrument the beginning and
end of each empty try-catch block with ASM, then apply an Aspect] aspect to find all methods
executed in the dynamic scope of the try-catch block (i.e., transitively called in the block) that
may throw the exception being caught.> (We also check that there is no intermediate method that
handles the exception, by analyzing the signatures of parent methods on the call stack.) In the first
pass we collect all such methods and generate custom AspectJ aspects for the second pass. During
the second pass, we then track the execution of all methods we identified in the first pass and identify
thrown exceptions of the right type. For any such exception we issue an RFBI error report.

2.2.4. Equals Method Overrides Equals in Superclass and May Not Be Symmetric
(EQ_OVERRIDING _EQUALS _NOT_SYMMETRIC). Part of the conventions of comparing for value
equality (via the equals method) in Java is that the method has to be symmetric: the truth value
of ol.equals (02) has to be the same as that of 02.equals (ol) for every ol and o2. FindBugs
has a bug pattern “equals method overrides equals in super class and may not be symmetric”, which
emits a warning if both the overriding equals method in the subclass and the overridden equals
method in the superclass use instanceof in the determination of whether two objects are equal.
The rationale is that it is common for programmers to begin equality checks with a check of type
equality for the argument and the receiver object. If, however, both the overridden and the overriding
equals methods use this format the result will likely be asymmetric because, in the case of a
superclass, S, of aclass C, the instanceof s check will be true for a C object but the instanceof
c check will be false for an S object.

Possible programmer objections to static warnings. The above static check is a blunt instrument.
The programmer may be well aware of the convention and might be using instanceof quite legit-
imately, instead of merely in the naive pattern that the FindBugs analysis assumes. For instance, the
code of the JBoss system has some such correct equals methods that happen to use instanceof
and are erroneously flagged by FindBugs.

Dynamic clues that reinforce static warnings. Our residual investigation tries to establish some
confidence before it reports the potential error. We checked this pattern dynamically by calling both
equals methods whenever we observe a comparison involving a contentious object and test if the
results match (this double-calling is safe as long as there are no relevant side effects). If the two
equals methods ever disagree (i.e., one test is true, one is false) we emit an error report.

Implementation. We implemented this residual investigation using Aspect] to intercept calls to the
equals method and perform the dual check in addition to the original.

2.2.5. Equal Objects Must Have Equal Hashcodes (HE). As mentioned in the Introduction, Find-
Bugs reports an error when a class overrides the equals (Object) method but not the hashCode ()
method, or vice versa. All Java objects support these two methods, since they are defined at the root
of the Java class hierarchy, class java.lang.0Object. Overriding only one of these methods vio-
lates the standard library conventions: an object’s hash code should serve as an identity signature,
hence it needs to be consistent with the notion of object value-equality.

Possible programmer objections to static warnings. This warning can easily be low-priority or irrel-
evant in a given context. Developers may think that objects of the suspect type are never stored in
hashed data structures or otherwise have their hash code used for equality comparisons in the course
of application execution. Furthermore, the warning may be cryptic for programmers who may not
see how exactly this invariant affects their program or what the real problem is.

Dynamic clues that reinforce static warnings. Our Residual FindBugs Investigator installs dynamic
checks for the following cases:

3To apply the combination of ASM and Aspect] at load time, we had to make two one-line changes to the source code of
Aspect]. The first allows aspects to apply to ASM-transformed code, while the second allows AspectJ-instrumented code to
be re-transformed.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Residual Investigation: Predictive and Precise Bug Detection A9

— Object.hashCode () is called on an object of a class that redefines equals (Object) and
inherits the implementation of hashCode ().

— Object.equals (Object) is called on a class that redefines hashCode () and inherits the
implementation of equals (Object).

Meeting either of these conditions is a strong indication that the inconsistent overriding is likely
to matter in actual program executions. Of course, the error may not trigger a fault in the current (or
any other) execution.

Implementation. Our detector is implemented using the ASM Java bytecode engineer-
ing library. First, we create a blacklist containing the classes that only redefine one of
Object.equals (Object) and Object .hashCode () in a coordinated manner. Then we intro-
duce our own implementations of the missing methods in the blacklisted classes. The result is to
intercept every call to either Object.equals (Object) or Object .hashCode () in instances of
blacklisted classes.

2.2.6. Non-Short-Circuit Boolean Operator (NS). Programmers may mistakenly use the non-
short-circuiting binary operators & or | where they intend to use the short-circuiting boolean op-
erators && or | |. This could introduce bugs if the first argument suffices to determine the value of
the expression and the second argument contains side-effects (e.g., may throw exceptions for situa-
tions like a null-pointer dereference or division by zero). Therefore, FindBugs issues warnings for
uses of & and | inside the conditions of an if statement.

Possible programmer objections to static warnings. Such warnings can clearly be invalid or ir-
relevant, e.g. if the programmer used the operators intentionally or if they do not affect program
behavior. FindBugs can sometimes identify the latter case through static analysis, but such analysis
must be conservative (e.g., FindBugs considers any method call on the right hand side of an «& or
| | to be side-effecting). Therefore the error reports are often false.

Dynamic clues that reinforce static warnings. Using a residual investigation we can check for actual
side-effects on the right-hand side of a non-short-circuiting boolean operator. It is expensive to
perform a full dynamic check for side-effects, therefore we check instead for several common cases.
These include dynamically thrown exceptions (directly or in transitively called methods, as long
as they propagate to the current method), writes to any field of the current class, writes to local
variables of the current method, and calls to well-known (library) I/O methods. Since the residual
investigation can miss some side-effects, it can also miss actual bugs. Additionally, the residual
investigation will often fail to generalize: there are common patterns for which it will report an
error only if the error actually occurs in the current execution. For instance, in the following example
an exception is thrown only when the left-hand side of the boolean expression should have short-
circuited:

if (ref == null | ref.isEmpty/())

Still, the residual investigation generally avoids the too-conservative approach of FindBugs, while
reporting dynamic behavior that would normally go unnoticed by plain testing.

Implementation. The implementation of this residual investigation is one of the most complex
(and costly) in the Residual FindBugs Investigator arsenal. We rewrite boolean conditions with the
ASM bytecode rewriting framework to mark a region of code (the right-hand side of the operator)
for an Aspect] aspect to apply, using a “conditional check pointcut”. The aspect then identifies side-
effects that occur in this code region, by instrumenting field writes, installing an exception handler,
and detecting method calls to I/O methods over files, network streams, the GUI, etc. Additionally,
we use ASM to detect loc