D)),

Residual Investigation:
Predictive and Precise
Bug Detection

Kaituo Li

U. Massachusetts, Amherst

Christoph Reichenbach

U. Massachusetts, Amherst

Christoph Csallner

U. Texas Arlington

Yannis Smaragdakis
U. Athens & U. Massachusetts, Amherst

)

Philosophy

» You can solve all programming problems,
if you change what the program does

> results are not “wrong”, just “different”

» Ok, not really what this paper is about ©

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Static Analysis vs. Testing
for Bug Detection

Static Analysis Testing

- False Positives + No False Positives
* impossible paths/values * realizable paths
e overgeneralization

+ Fewer False Negatives - False Negatives
e covers more paths * most bugs missed
e covers more values * cannot generalize

>)

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Dynamic Analysis in the
Middle?

A
Static Analysis Dynamic |Testing

Analysis

+ No False Positives
* realizable paths

- False Positives
* impossible paths/values
* overgeneralization

- False Negatives
* most bugs missed
e cannot generalize

+ Fewer False Negatives
* covers more paths
* covers more values

©)

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Dynamic Analysis

» Often a synonym of testing

» Good dynamic analyses should be
more than testing

> predicting error (not just observing)
> fewer false positives than static analysis

» E.g., Eraser for race detection
> warns of inconsistent lock use: strong hint that race exists
» Goal: “generalize with confidence” —
predictive and precise (PaP)
dynamic analysis

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Dynamic Analysis in the
Middle?

A
Static Analysis PaP Testing

Dynamic
Analysis

+ No False Positives
* realizable paths

- False Positives
* impossible paths/values
e overgeneralization

Few False
Positives

- False Negatives
* most bugs missed
e cannot generalize

¢)

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

+ Fewer False Negatives
* covers more paths
* covers more values

Fewer False

Negatives
than Testing

“PaP Dynamic analysis sounds great!
Get me a half dozen!”

» Problem: how to design predictive and
precise dynamic analyses

» Few PaP dynamic analyses in literature
» No general recipe

» This paper: informal recipe for PaP
dynamic analyses

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

This Work: Residual Investigation

» Recipe:
1. take a static analysis

2. examine its false positives: what is the common
objection to the static analysis?

3. design dynamic test to disprove objection

» This dynamic test is a “residual investigation” for the
static analysis

> “partner of static analysis at run-time”
> cf. existing test suite
» Always same 3 parts in recipe:
1) static analysis; 2) objection; 3) dynamic test

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Example Residual Investigation

» 1) Static analysis: find program classes that
override “equals” but not “hashCode”

> common Java guideline violation
> detected by FindBugs tool

» 2) Objection: “but | never use such objects in a
hash table”

» 3) Dynamic test: execute program, see if such
objects ever have “hashCode” called

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Example In More Detail

» Overriding “equals” but not “hashCode” can be serious
bug

> |lose object identity, two copies of same object in structure
» Testing is ineffective
> very hard to reproduce bug

» Usual static warning is a false positive

Many classes override “equals” but not “hashCode”

> org.jboss.deployment.dependency.ContainerDependencyMetaData
> org.jboss.management.mejb.SearchClientNotificationListener

> org.apache.jasper.compiler.Mark
>

A PaP Dynamic Analysis:

* predictive (warns of error although an existing test case
runs fine)

* precise (high error confidence)

Another Residual Investigation

» 1) Static analysis: return value of “read” call ignored
> bug: “read” may not return the amount of data expected
» 2) Objection: “for this object, ‘read’ always returns
the bytes | request”

+ org.eclipse.equinox.internal.p2.swt.tools.lconExeSLEDatalnputStream

» 3) Dynamic test: execute program, see if “read” ever
returns fewer bytes on any object of suspect type

> predictive: not just on calls that ignore return value of
Hreadﬂl

A PaP Dynamic Analysis:
* predictive (warns of error although the existing test case

runs fine)
e precise (high error confidence)

Yet Another Residual Investigation

» 1) Static analysis: find possible races in a program

> static race detection is a problem with well-known false
positives

» 2) Objection: “sure, this variable is not consistently
protected, but it’s thread-locall”

» 3) Dynamic test: execute program, see if variable is
ever accessed by a second thread

> predictive: not watching for race at all

Stephen Freund came up with this in under a minute

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Our Paper

» Recipe for Residual Investigation: design a dynamic
analysis to accompany a static one

> confirm reports, or downgrade them

» Applied recipe repeatedly to show feasibility
> on 7 static analyses from FindBugs

» Implemented dynamic analyses using bytecode
rewriting and Aspect)

» Result: RFBI tool (Residual FindBugs Investigator)
» Evaluation on several large projects

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

)

Usage Overview

)

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Important Usage Note

» Residual Investigation does not compete with static
analysis, it complements it

» Static analysis is a prerequisite
» Static analysis reports are always available
» Residual investigation only prioritizes them

» Three outcomes:
> high alert / bug: suspicious, based on dynamic analysis

> medium alert / not exercised: dynamic analysis failed to
confirm, due to lack of exercising

> low alert / not reproduced: dynamic analysis failed to
confirm, but not due to lack of exercising

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Usage Overview

Search for Residual
likely bug | Investigation

Static

class |

C

Dynamic

Existing tests:

C.m(1); ~ Run tests, collect run-
C.m(50 time evidence, and

evaluate which bug
should be reported

16)

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

)

Implementation

The RFBI Tool

)

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Example Implementations (1)

» Residual Investigation for “class overrides ‘equals’
but not ‘hashCode’”

» Dynamic test: execute program, see if such objects
ever have “hashCode” called

» Implementation: add our own “hashCode”
> using ASM (bytecode transform lib):

class org.apache.tomcat.util.buf {
@Override
public int hashCode () {

reglsterHashCodeObservedOn (
this.getClass());

return super.hashCode () ;

J

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Example Implementations (2)

» Residual Investigation for “return value of ‘read’ not
checked”

» Dynamic test: execute program, see if “read” ever
returns fewer bytes on any object of suspect type

» Implementation:
> Aspect) Advice to instrument read calls and register them per-type

after(byte[] b, int off, int len)
returning (int wvalue) :readcalljoinpoint (b,off, len)
{
1f (value == len)
registerReadEqual (thisJoinPointStaticPart) ;
else 1f(value < len)
reglisterReadFewer (thisdJoinPointStaticPart) ;

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

20)

Residual Investigation
Catalog

Analyses in RFBI

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Other 5 Analyses

Bug Pattern Run-time evidence that reinforce | Implementation Tool
static warnings

Clone Method Does Not A subclass’s clone can be shown Source generation +
Call super.clone() dynamically to never reach Aspect)
super.clone()

Dropped Exception Any method in the call graph of First pass: ASM
the try block ever throws the Second pass: Aspect)
dropped exception anywhere

Equals Method May Not Be Two equals methods ever Aspect)

Symmetric disagree

Non-Short-Circuit Boolean Actual side-effects on the right- ASM+Aspect)
Operator hand side of a non-short-
circuiting boolean operator

Bad Covariant Definition of Object.equals(Object) is called on ASM run-time/ JDK
Equals suspect class class build-time

instrumentati%
y 4

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

2)

Evaluation

Sample of Results

)

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Evaluating Residual Investigation

» 7 large open source systems
> JBoss
> BCEL
> NetBeans
> Tomcat
> JRuby
> Apache Commons Collection
> Groovy

23

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Evaluating Residual Investigation

» Test suites run take anywhere from 23sec

to 3 hours
> 4-core 2.4GHz Intel i5 with 6 GB RAM

» Runtime slowdown

> 2-3 factor

> except for Dropped Exception, which goes up to 6
+ execute test suites twice
+ watch a large number of calls

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Evaluating Residual Investigation

» FindBugs reports 436 bugs

» For 393, the test suite does not exercise conditions
relevant to the bug at all

> few true bugs, based on our sampling and inspection

» RFBI does very well in the other 43
> Summary' > 77% precision, = 96% recall

Dynamic Non-bug undetermined
Reports

31 reinforced
12 rejected 0 11 1

43 total 24 17 2

25)

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Threats to Validity

» Choice of subject applications
» Choice of FindBugs patterns

» Choice of static analysis system

Vo

),

Conclusions

(See paper for related work,
technical insights and more)

)

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

Conclusion

» Residual Investigation =
way to produce predictive and precise
(PaP) dynamic analyses

> fewer false positives than static analysis
> more bugs caught than testing

» Using a standard recipe on a static
analysis pattern

» Applied to 7 FindBugs analyses, evaluated
on large systems

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

D)),

Questions?

)

Li, Reichenbach, Csallner, Smaragdakis, "Residual Investigation: Predictive and Precise Bug Detection"

